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ABSTRACT:  Liquid Composite Molding (LCM) processes are now a prevalent group of 
manufacturing methods for advanced composite materials.  They offer many advantages over 
more traditional manufacturing methods, such as the ability to deal with large and complex 
shapes.  Numerical simulations can lead to better predictions of process parameters.  The 
standard procedure for the simulation of these processes is to use a Control Volume (CV) 
method.  One problem with the CV method is that resin mass is not conserved on an element 
level, and this has consequences for accuracy.  An attractive alternative to the CV method is 
to use a single grid of non-conforming finite elements.  Such non-conforming elements 
encompass essential mass conservation properties.  In this study it is shown how the standard 
non-conforming triangular element can be adjusted to ensure mass conservation on the 
element level and to ensure continuity of the fluid flux across inter-element boundaries.  
Numerical experiments are carried out which show that single grids of such elements, and 
nonconforming quadrilateral elements, produce accurate results in the case of the Injection 
Compression Molding process. 
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INTRODUCTION 
 
Liquid Composite Molding (LCM) is a family of advanced composite materials 
manufacturing processes, including Resin Transfer Molding (RTM), Injection Compression 
Molding (I/CM) and Vacuum Assisted Resin Transfer Molding (VARTM).  In these 
processes, a fibrous material is laid out in a mould, compacted under pressure, impregnated 
with a polymer resin and finally allowed to cure.  In RTM, rigid molds are used to compact 
the fibrous material to its final thickness before resin injection.  In I/CM, the upper mold is 
brought down with velocity- or force-control but not to the part’s final thickness; this allows 
for ease of resin flow during injection and the final compaction to the final thickness helps 
drive the injected fluid through the part.  In VARTM, a flexible bag covers one side of the 
part and vacuum pressure drives the fluid through the fibrous material.  The LCM processes 
offer many advantages over more traditional manufacturing methods, such as the ability to 
deal with large and complex shapes and the reduction in exposure to harmful emissions. 
 
Mathematical models and numerical simulations of the LCM manufacturing processes can 
lead to better predictions of flow paths, mould filling times, required mould forces, preform 
final thicknesses and of the optimal positioning of injection ports and vents.   
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The governing equation for the injection phase of these processes is derived from the 
conservation of mass of both the fluid and solid phase: 
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where h is the thickness of the component, p is the fluid pressure, K is the permeability tensor 
and µ  is the fluid viscosity.  If thickness gradients are small enough to be  neglected, then 
Eqn. 1 reduces to 
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where .  In RTM applications, .  In I/CM applications with rigid moulds, h  
will be constant throughout the part – it will be a known of the problem in velocity controlled 
compression, an unknown in the case of a force/pressure driven compression.  In flexible 
mould / vacuum-bag processes,  will in general vary and be an unknown of the problem. 

dtdhh /=& 0=h& &
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Inherent in Eqn. 2 is the conservation of (fluid) mass relation 
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where q is the Darcy velocity, with vq φ= , and φ  is the porosity, v being the fluid velocity, 
and Darcy’s law for fluid flow, 
 

p∇−=
µ
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The standard procedure for the numerical solution of  Eqn. 1 (or 2) is to use a Control Volume 
method, whereby one grid of elements is used to evaluate fluid pressures, for example using 
the Galerkin Finite Element Method.  A second grid (of control volumes) is then used to 
advance the fluid over some time interval.  This ensures that fluid fluxes (pressure gradients) 
are evaluated within elements, and possible discontinuous pressure gradients at element 
boundaries are avoided.  A large number of simulations have been carried out using this 
method, for RTM, I/CM, and flexible-bag processes, e.g. [1,2]. 
 
One problem with the Control Volume method, when used to simulate processes for which 
the Darcy velocity field is not divergence-free, for example I/CM and VARTM, is that resin 
mass is often not conserved on an element level, and this has consequences for the accuracy 
of the method.  For example, for a linearly (P1) interpolated pressure , the FEM solution 
for q within any given element, , is, from Eqn. 4, 

FEp
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a constant.  Thus , and, from Eqn. 3, mass is not conserved within the element.  
Note that, in an RTM simulation (with constant permeability/thickness), where , mass is 
conserved and this is not an issue.  

0=⋅∇ FEq
0=h&

 
Another approach is to use the so-called mixed methods, which yield a more accurate velocity 
and a locally conservative fluid mass.  Here, both Eqns. 3 and 4 are discretised and a solution 
for both p and q is sought simultaneously, on either a single grid or on overlapping grids.  The 
commonest scheme is to take p constant and q to vary linearly over an element/volume.  The 
velocity obtained is more accurate than that using the standard Galerkin FEM with the CV 
scheme, but the mixed methods are computationally much more expensive. 
 
An attractive alternative to these approaches is to use a single grid of finite elements.  When 
non-conforming elements are used, essential mass conservation properties are encompassed.  
These elements are discussed in the next section. 
 
 

ELEMENTS WITH CONSERVED MASS 
 
Nonconforming (and conforming) P1 elements have been used to simulates I/CM processes 
(e.g. [3]) and have been shown to perform well.  The performance of conforming and 
nonconforming P1 elements in IC/M and VARTM processes can be improved using a device 
introduced by Chou and Tang [4].  Here, the flux q is first approximated over an element E by 
the linear function , using a Taylor series expansion about the barycentre  of the 
element,  
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Assuming that  varies over the element according to aq
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The conservation of mass requirement is then 
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where  is the area of the element and ∆
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so that  is the average of f over the element, or, equivalently, Ef Ea f=⋅∇ q .  Thus 
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Assuming one has first computed the flux  using the standard Galerkin FEM, as in (5), 
one has 
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The second term on the right here is the correction to the FEM solution which ensures 
conservation of mass.  It depends only on the instantaneous value of  and the element 
geometry, and so is the same for both conforming and non-conforming elements of the same 
geometry. 

hh /&

 
Continuity of Flux across Nonconforming Element Boundaries 

 
Although the formulation described above ensures that mass is conserved over an element, 
there is no guarantee that the flux obtained is continuous across element boundaries.  For the 
case of nonconforming linear triangular elements, the continuity of flux across element 
boundaries can be guaranteed by writing 
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where  is a small constant correction term [4].  It can be shown that EC
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where  are the barycentre coordinates, ),( BB yx ∆  is the area of the element, ( ii yx , )  are the 
coordinates of the vertices of the element, and  are the three non-conforming element 

shape functions.  Since ∫ , this implies that so long as  is constant along the 

mould, which is often the case in practice,  is zero and the flux is continuous, otherwise 
the correction term needs to be included.  It was shown in some recent work [5] that a regular 
grid of right-sided elements,  is zero also for the case of linearly varying . 
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NONCONFORMING QUADRILATERAL ELEMENTS 

 
Much research has been carried out recently into finite element analysis with non-conforming 
elements, in particular with quadrilateral elements, e.g. [6] (see [7]).  This allows for a more 
powerful general meshing of moulds, using arbitrary arrangements of triangular and/or 
quadrilateral non-conforming elements. 
 
As an illustrative example, consider the following simple problem: a square-shaped mould of 
length l and width w contains a uniform fibrous material initially filled with resin to 1lw× .  
The upper mould is brought down at a constant velocity.  The following data is used (the 
subscript “1” denotes values at the start of the simulation): 
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The Carman-Kozeny relation was used to relate permeability to volume fraction (thickness): 
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The problem was solved in six different ways, using piecewise linear triangular elements and 
quadrilateral elements: 
 

T1: triangle, single grid, conforming elements (with mass conservation) 
T2: triangle, single grid, non-conforming elements (with mass conservation) 
T3: triangle, control volumes 
Q1: quadrilateral, single grid, conforming elements 
Q2: quadrilateral, single grid, non-conforming elements 
Q3: quadrilateral, control volumes 

 
The interpolation functions used for the case Q2 are given in the Appendix.  Results for the 
fill-time were compared with the exact solution 
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and are shown in Fig. 1. The plot of percentage error against number of degrees of freedom 
(nodes) shows that the nonconforming triangular element with the mass conservation 
correction term performs well.  Also, the non-conforming quadrilateral element performs 
satisfactorily when compared with the control volume method. 
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Fig. 1  % Error of IC/M flat-plate filling using different elements 
 
 

CONCLUSIONS 
 
In this study, the governing equations of LCM were solved using a number of different 
variants of the Finite Element Method.  In particular, solutions were obtained using single-
grid schemes with and without mass conservation, and with the standard CV method, 
involving triangular and quadrilateral elements.  Numerical experiments were conducted to 
gauge the accuracy of the various schemes against standard solutions.  It was demonstrated 
that triangular non-conforming elements with a mass-conservation correction term perform 
well in I/CM simulations, as do nonconforming quadrilateral elements, showing that simple 
single-grid meshes can be used productively for LCM simulations. 
 
 

APPENDIX 
 
The standard bilinear (conforming) Q4 element has as span { }xyyx ,,,1 .  This span cannot be 
used for a nonconforming element since it cannot generate interpolation functions which are 
zero or 1 at the element mid-sides.  Rotating a rectangle by 45 degrees, or equivalently, using 
the span { }22,,,1 yxyx −  allows one to generate the interpolation functions.  This can be 
amended to { }4

3
524

3
52 ,,,,1 yyxxyx −−  for greater accuracy [8].  This leads to the shape 

functions, in terms of natural coordinates ( )ηξ , , such that the four nodes of each element are 
located at ( ) ( 1,1, )±±=ηξ , 
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