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ABSTRACT:  Liquid Composite Molding (LCM) processes including RTM and VARTM 
are used for producing polymer matrix composite. In any typical LCM process a thermoset 
resin is injected/sucked into a mold cavity with a pre-placed preform of fiber mats. The dual-
scale nature of those fiber preforms gives rise to the unsaturated flow during mold filling in 
LCM processes that is characterized by a modified continuity equation with a `sink’ term due 
to the delayed absorption of resin by fiber tows behind the flow front. Application of the 
mathematically rigorous volume averaging method results in a momentum balance equation 
that has two additional terms apart from the pressure gradient terms associated with the 
Darcy’s law. In this paper, we would explore the importance of these two terms (called the 
Brinkman term and the interfacial kinetic-effect tensor term) near the flow front in a dual-
scale porous medium created by the dual-scale fiber mats. Through a numerical simulation of 
the unsaturated flow in an idealized dual-scale porous media, it is discovered that these two 
terms become significant in a small region behind the flow front where the sink term changes 
rapidly. So the results suggest that a modified form of Darcy’s law needs to be used near the 
flow front during LCM mold-filling simulation in a dual-scale fiber mat. 
 
KEYWORDS: RTM, resin transfer molding, LCM, liquid composite molding, unsaturated 
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INTRODUCTION 
 

Composite materials have become critically important in aerospace, automotive, and civil 
engineering areas along with the biomechanics and other fields because of their high stiffness 
to weight ratio, long fatigue life, increased corrosion resistance, and their ability to 
consolidate parts.  Liquid composite molding (LCM) technologies such as the resin transfer 
molding (RTM), vacuum assisted RTM (VARTM), and Seeman Composite Resin Infusion 
Molding Process, are very important in the manufacture of polymer composites [1]. These 
composites consist of polymeric matrix which is interspersed with reinforcements such as 
carbon and glass fibers. In LCM, the composites are created by impregnating a fiber-packed 
mold cavity with resin by injecting it through the inlet gates of the mold. Numerical 
simulation of such mold-filling process in LCM is becoming indispensable for optimizing the 
mold design [2-5].  
 
An LCM mold containing randomly oriented fibers of a random mat is an example of the 
single-scale porous medium.  Here, all the pores are of the same length-scale.  The fibers are 
impermeable and the spacing between fibers can be treated as homogeneous.  However, if the 
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solid phase is porous with the pore size of a much smaller length-scale, the porous medium is 
then classified as a dual length-scale or dual porosity porous medium.  Braided, woven or 
stitched fiber mats used in LCM processes, where fiber bundles are permeable to resin due to 
presence of pores between fibers within the bundles, fall under this category. The transport 
processes that occur inside this dual-scale porous medium are often significantly different 
from that of the single-scale porous medium. Babu and Pillai [6] discovered that the dual-
scale porous media with continuous inter-tow gaps1 (created by the stitched mats only) allow 
the lead-lag flow to manifest where the resin races along the gaps before fully impregnating 
the tows2. The delayed wetting of tows behind the resin front in the gap region leads to a 
region of partial saturation behind the front in such dual-scale fiber mats. The flow in such a 
region is called the unsaturated flow and is often characterized either by a visually observable 
region of a lighter hue as compared to the darker saturated region, or by a droop in the inlet-
pressure history [6].  The onset of the unsaturated flow the dual-scale stitched mats can be 
predicted by certain dimensionless numbers such as the pore volume ratio and sink effect 
index [8].  A synopsis of some recent work on the unsaturated flow in dual-scale porous 
media was presented by Roy et al. [7].  

 
Mathematically rigorous volume averaging method have been adopted to derive the averaged 
form of mass and momentum equations for the unsaturated flow in dual-scale porous media 
encountered during mold filling in LCM processes [9,17].  During the averaging process, 
averaging of the shear stress term of the Navier-Stokes equation in the gap region gives rise to 
a new quantity named the interfacial kinetic-effects tensor which includes the effects of liquid 
absorption by the tows, and the presence of slip velocity on their surface.  Initial scaling 
analysis suggested that its effect on the momentum balance becomes negligible if the gradient 
of the rate of resin absorption by the tows is small [9]. However, beyond this qualitative 
insight, no estimate of the magnitude of this newly found term is available in the literature nor 
have we encountered any studies wherein the effect of spatial variation of the absorption rate 
on this term is discussed.  
 
The objective of this work is to estimate the magnitude of two forces that results due to 1) the 
interfacial kinetic-effects at the tow-gap interface (the interfacial kinetic-effects force), as well 
as 2) the deceleration of the average velocity (the Brinkman force) in the unsaturated region of 
isothermal flow in a dual-scale porous medium.  A finite element based numerical method is 
used to model 2-D isothermal unsaturated flow between two parallel porous plates. Parametric 
studies are conducted to evaluate the two forces in the unsaturated region just behind the flow 
front. 

 
Summary of volume averaged transport equations  

Pillai [9] rigorously derived the macroscopic transport equations for isothermal flow in the 
dual-scale porous media using the volume averaging method, the summary of which is 
presented in this section. Only the relevant gap-averaged balance laws will be listed; their 
derivation as well as the estimation of their various source and sink terms with the help of the 
single-scale model for the intra-tow flows is presented elsewhere [9]. 
 
Flow variables in LCM are invariably averaged in an averaging volume called REV or the 
representative elementary volume. For the fibrous dual-scale porous media, Pillai [9,17] has 
proposed an REV shown in Fig. 1 where the averaging volume consists of the gap and tow 
regions. 
                                                 

1 Large-scale pores between tows will be referred to as the gap phase or gap region, or just gaps. 
2 Fiber bundles will be referred to as the tow phase or tow region, or just tows. 
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Mass balance equation for macroscopic flow in the gap region is given as 

 Sg −=⋅ v∇  (1) 

Here gv  is the volume-averaged liquid velocity in the inter-tow gaps, and is computed as  

dV
V

V/1 ∫=
g

gg vv  where, as shown in Fig. 1, V and Vg are the total and the gap volumes for 

the  REV. (Subscript g indicate quantities that are of the gap region.) S is the sink term and is 
equal to the volumetric rate of absorption of resin by the tows per unit volume as 

 ∫ ⋅=
gtA

gtg dA
V
1S nv  (2) 

where Agt is the gap-tow interface area within the REV, and ngt is the unit normal at the gap-
tow interface directed from gaps to tows. 

 

Fig.1. A typical Representative Elementary Volume (REV), or the averaging volume, for a 
fibrous dual-scale porous medium  
 
The minus sign of the sink term in the continuity equation (1) suggests that the flow of the 
resin slows down in the unsaturated gap region because of the absorption of resin by fiber 
tows.  An estimation of S requires the integration of resin flux into the tows, which in turn 
require solving the single-scale transport equations within the tow region [7,17].   
 
Momentum balance equation for the gap region is derived to be 

{ } 0µεµPε 1
g

2 =⋅−⋅++− −
ggggg

g

gg vKIv ∇∇∇  (3)  

where is the gap volume fraction, V/Vgg =ε
g

gP  is the gap-averaged resin pressure 

computed as dV
V

PV/1P g ∫=
g

gg

g
, µg is the viscosity of resin flowing in the gaps, and Kg is 

the permeability tensor for flow in the gaps. I, the interfacial kinetic-effects tensor, is defined 
as 

 ( )∫ ++−=
gtA ggtgtg dA

V
1S vnnvI δ  (4) 
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with δ as the unit tensor. Note that I becomes identically equal to zero when the tows are 
impermeable. (Since vg on gap tow interface becomes zero due to the no-slip condition on the 
solid tows.). 
 
Eq. (3) is the dual-scale equivalent of the Brinkman’s equation for single-scale porous 
medium [10].  This equation differs from that for single-scale porous medium in that the later 
equation does not contain the term I⋅µ ∇g , which we would name as the interfacial kinetic-
effect force3, and which is likely to decelerate the gap flow in the regions of extreme gradients 
in the sink function S that take place very close to the flow front. The first term 

g

gg P∇ε−  is 

the pressure force which drives the macroscopic gap flow.  The second term g
2

g v∇µ , 
which is to be called the Brinkman force, also tends to slow down the flow and becomes 
significant in areas of large changes in the gradients of the volume averaged velocities, such 
as at the interface of a dual-scale porous medium adjoining an open channel (section 2.11 in 
Ref. [14]). The last term g

1
gg vK ⋅µε− −  represents the net force at the solid-fluid interface.   

 
ANALYZING FLOW IN A UNIDIRECTIONAL DUAL-SCALE MEDIUM 
 

We study the unsaturated flow behind a resin front that is moving through an idealized 
unidirectional fiber mat, and which is represented as a set of parallel channels of width lo 
(representing gaps in the dual-scale medium) separated by porous tows of thickness li each. 
(See Fig. 2A.)  A target unit cell consisting of several thin REVs (Fig. 2B) is selected to 
conduct flow simulation in the gap region. The target unit cell is preceded by a hypothetical 
precursor unit cell, which is there merely to provide a realistic inlet velocity condition to the 
former. An exponentially increasing gap-to-tow `sink’ velocity, along with a Beavers-Joseph 
slip velocity is imposed within the unit cell at the gap-tow interface [15]. The resultant flow 
field is used to estimate the non-Darcy terms in the gap-averaged momentum balance 
equation and evaluate their importance. 

 
Reformulating the momentum balance equation 
 
We now rearrange Eq. (3) to obtain an equation similar to Darcy’s Law.  Contracting both 
sides of Eq. (3) by taking a dot product with and dividing both sides by , we get gK ggµε

 ( I
K

v
KK

v ⋅⋅
ε

+⋅
ε

+⋅
µ

−= ∇∇∇
g

g
g

2

g

gg

g
g

g
g )P  (

                                                

5) 

This equation can be regarded as a Darcy’s Law with two correction terms: the first arising 
from the Brinkman force and the second from the interfacial kinetic-effect force. Retention of 
these two terms depends on how significant these terms are in the unsaturated region just 
behind the moving resin front.   
 
Non-dimensionalizing Eqn. (5) and taking its x-component (see [15] for details) results in  
 

 

3 Note that all terms in Eqn. (3) has the dimensions of force per unit volume. 
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Superscript * represents dimensionless quantities. The y-component of Eq. (5) is also satisfied 
as its both sides become identically equal to zero. After exploiting the inherent symmetries in 
the posed flow problem, Eq. (6) can be reorganized further [15] as 
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where , to be referred to as Brinkman correction factor, is the dimensionless ratio of 
Brinkman force to pressure force: 
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In the above equation, gx

*
gv ε is replaced by 

x

*
gv 4. 

I ,  R to be called the interfacial kinetic- effect correction factor, is the dimensionless ratio of 
interfacial kinetic-effect force to pressure force: 
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Part A Part B 

Fig. 2. Part A: Schematic of a 2-D resin flow through gaps in a bank of porous and liquid 
absorbing 2-D tows (with infinite depth) stacked parallel to each other.  The REV shown here 
is a thin disc of infinite width and a finite x-direction length ‘w’. Part B: Exploded view of the 
periodic target unit cell of size ‘s’ shown in Part A along with the hypothetical precursor unit 
cell.  The sink velocity and slip boundary conditions exist only in target unit cell.  Parabolic 
velocity profile is assumed at the entrance of the precursor unit cell.   

                                                 
4 Note that  being constant for our medium shown in Fig. 2 enables it to be moved inside the double 
derivative. 

gε
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Flow simulation 

A finite element based multiphysics software COMSOL Multiphysics 3.2 [16] is used to solve 
the point wise continuity and momentum balance equations in the gap region. Typical 
parameter values used in this simulation as well as other details are listed elsewhere [15].   
The dimensionless velocity at the precursor cell inlet is assumed to be parabolic to resemble 
the fully developed flow through parallel plates and the dimensionless inlet velocity averaged 
over the inlet area is taken as unity.  The interface between the two unit cells is treated as an 
internal boundary condition.  Both the Beavers-Joseph slip boundary condition and variable 
sink velocity in the direction of flow is considered in the analysis.  
  
Traditional volume averaging method, which requires that the representative elementary 
volume (REV) be of the same size as the unit cell, cannot be applied here as the effect of 
rapidly changing sink velocity on the correction terms will be lost.  Instead, a specialized form 
of volume averaging method is adopted where the unit cell is subdivided into thin slices of 
REVs within which, the averaging of flow quantities is carried out.  The width of these 
subdivided slices are one-tenth of that of the target unit cell throughout the unit cell except 
near the exit where the width is reduced to one-hundredth [15].  The much finer slicing of the 
unit cell closer to the flow front ensures that the volume averaged quantities (especially the 
absorption rate) are sufficiently accurate even in regions where the sink gradients are high.  
 

Part A Part  B 

Fig. 3  Part A: A COMSOL Multiphysics 3.2 schematic of pressure and velocity profiles in 
precursor and target unit cells. The smaller cells on the right hand side are within the target 
unit cell (0 ≤ x* ≤ 1) and represent the sliced REVs. Part B: Various absorption rates at the 
gap-tow interface (the lower curves) within the target unit cell and the corresponding volume 
averaged velocity distributions (the upper curves).   

Once the microscopic transport equations are solved (Fig. 3(A) describes a typical distribution 

of point wise velocity and pressure), macroscopic quantities such as xgv *

 and 
g*

gP
 are 

computed for each REV slice by integrating the local velocity and pressure. Later the 
derivatives of these quantities are estimated through the backward differencing schemes such 
that each node value corresponds to the average at the REV slice.  
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RESULTS, DISCUSSION AND CONCLUSION 

 
The gap-tow absorption velocity or the sink term  as a function of x-coordinate is changed by 
varying parameters  and  of an exponential function [v*M *N g,y|gt = exp( x*)]  
as shown in Part B of Fig. 3B such that the area under the curves remains the same in order to 
maintain constant outlet velocity. This figure also shows the variation of the volume-averaged 
x-velocity as a function of  confirming that the outlet velocity, and hence the total 
absorption rate within the unit cell, remains constant for all absorption rates considered. 

*M *N

*x

 

 
Part A Part B 

               
Fig. 4  The Brinkman (RB) and interfacial kinetic-effect (RI) correction factors as a function 
of are plotted in Parts A and B at various absorption rates. *x
 
Part A and B of Fig. 4 show and as functions of . The plot indicates that both 

and  are proportional to the gradient of the sink term. The Brinkman correction factor 
can reach a value as high as 0.6 and the interfacial kinetic-effect correction factor can reach 
values up to 0.7.  For those tows that are directly behind the flow front where the absorption 
gradient is steep

BR IR *x

BR IR

5, the Brinkman and interfacial kinetic-effect correction factors become 
significant and hence cannot be discarded in the flow analysis unlike in fully saturated region.  
Although this means that unsaturated flow modeling is complicated near the flow front due to 
a large gradient in the sink term, this finding is of fundamental importance and suggests the 
retention of the correction factors and  for accurate modeling of LCM processes. BR IR
 
See [15] for a description of dependence of and  on the local Reynolds number, the slip 
velocity, and the slip coefficient. 

BR IR

 
After studying this interesting result, we can finally conclude that the hitherto neglected 
Brinkman and the interfacial kinetic-effect tensor terms in the momentum balance equation 
will become important in a small region just behind the resin front in a dual-scale fiber mat 
(especially the unidirectional one) due to a strong gradient in the sink term. 

                                                 
5 The velocity of the flow front within the tow is inversely proportional to the extent of penetration of the 

flow front from the tow-gap interface. Since the tows directly behind the flow front in the gap region are just 
exposed to the resin, the extent of penetration is minimal and hence the gradient of absorption rate is very steep. 
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