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ABSTRACT: A meshfree particle method is used to simulate resin flow through a 
complex network of fibers. Flows are modeled by the incompressible Navier-Stokes 
equations. The particle projection method is used to solve the Navier-Stokes equations. 
The spatial derivatives are approximated by the weighted least squares method (WLS). 
One application is presented regarding the application of the method to numerical 
permeability prediction, related to LCM processes. 
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INTRODUCTION 
 
Meshfree techniques 
 
In this paper we present a mesh-free method called FPM (Finite Point Method) for 
simulations of resin transfer moulding through a complex network of fibers. This 
method was developed by Dr Jorg Kuhnert at ITWM in Germany. A fluid domain is 
first replaced by a discrete number of points, which are referred to as particles. Each 
particle carries all fluid information, like density, velocity, temperature etc. and moves 
with fluid velocity. Therefore, particles themselves can be considered as geometrical 
grids of the fluid domain. This method has some advantages over grid based techniques, 
for example, it can handle fluid domains, which change naturally, whereas grid based 
techniques require additional computational effort. Or they are able to simulate the flow 
in very complicated domains, which would be impossible or difficult to mesh. 
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A classical grid free Lagrangian method is Smoothed Particle Hydrodynamics (SPH), 
which was originally introduced to solve problems in astrophysics (Lucy 1977, Gingold 
et al. 1977). It has since been extended to simulate the compressible Euler equations in 
fluid dynamics and applied to a wide range of problems, see (Monaghan 92, Monaghan 
et al. 1983, Morris et al. 1997). The method has also been extended to simulate inviscid 
incompressible free surface flows (Monaghan 94). The implementation of the boundary 
conditions is the main problem of the SPH method. 
Another approach for solving fluid dynamic equations in a grid free framework is the 
moving least squares or least squares method (Belytschko et al. 1996, Dilts 1996, 
Kuhnert 99, Kuhnert 2000, Tiwari et al. 2001 and 2000) which derived in the Finite 
Pointset Method (FPM). With this approach boundary conditions can be implemented in 
a natural way just by placing the particles on boundaries and prescribing boundary 
conditions on them (Kuhnert 99). The robustness of this method is shown by the 
simulation results in the field of airbag deployment in car industry. Here, the membrane 
(or boundary) of the airbag changes very rapidly in time and takes a quite complicated 
shape (Kuhnert et al. 2000). 
 
FPM fluid code 
 
FPM is a meshfree CFD finite difference code, mainly designed to overcome several 
drawbacks of classical CFD methods (Finite Element Method (FEM) , Finite Volume 
Method (FVM)). The main drawback of the classical methods (FEM,FVM) is the 
relatively expansive geometrical mesh-grid required to carry out all numerical 
computations. The computational cost to establish and maintain these grids becomes 
more dominant as the considered geometry becomes complex or moves in time. For 
several applications, the effort for grid maintenance is beyond acceptance, the 
computations take too long or fail completely. Thus, FPM opens up new fields of 
application in computational structural and fluid mechanics, or makes the handling of 
several problems much more easy. 
 
General Equations 
 
FPM is a mesh-free thermal CFD code for incompressible and compressible flows. FPM 
includes newtonian viscosity, natural convection, heat conduction, heat exchange at the 
boundaries. 
FPM  solves the general Navier Stokes equation as written below in a Lagrange form : 
 
 0ρρdt

d =∇⋅+ v
( ) ( ) pvρv   ρρd  gSv −∇+∇⋅ ⋅=∇dt +

( ) ( ) ( ) ( ) ( ) ( )Tk ρpρEρE T∇⋅∇+⋅⋅=⋅∇−⋅∇+∇⋅+ vgvSvv

                        (1) 

dt 
d 

 
v : fluid velocity 
ρ : density 
p : pressure 
S : deviatoric stresses 
g : gravity 
T : temperature 
E : specific total energy per unit mass 
 
For incompressible flows, these equations can be simplified as follows : 
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Moving Least Square (MLS) approximation 
 
FPM does not require the support of a mesh and therefore values are known at discrete 
“interpolation” points, which do not have a fixed connection like finite elements 
between them. The list of neighbor points is determined for each point at each time step 
in order to construct afterwards a proper interpolation function as described in Fig.1. 
For this purpose, a smooth interpolation of the discrete function values is constructed 
using polynomial functions, best fitted to the discrete values using a moving least 
square method (Fig.2). 
 

Fig. 1: Smoothing length 

radius h

Point  "i"

 
 

 

= Point position

= Function value 
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Fig. 2 : Moving least square method : f(i) stands for the value of point I of the function 

to be interpolated : pressure, density, velocities, temperature. 
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The interpolation function that is constructed is based upon the Moving Least Square 
(MLS) approximation. The idea is to find the local polynomial which minimizes the 
distance between the values at the discrete points and the approximated values on the 
function. This is done using a least square fit method as follows: 
 

( ) ( )( ) min  xx,pxx
!

,1

2
ii =−⋅−∑

= Ni
difW                                                  (3) 

 
where d is the degree of the polynom, d>=2 for Navier-Stokes as second order 
derivatives are required. 
 
The weight function W(x-xi) decreases with respect to the distance between the location 
x of the central point and the neighbor points xi, so that points which are far away from 
the central point will have less influence than points which are closer. The domain of 
interpolation is limited by a sphere of radius h, called the smoothing length, so that 
points which have a distance greater than h will have no interaction. 
The interpolation function can afterwards be derived. For Navier Stokes incompressible 
cases, second order derivatives have to be computed. In order to maintain an even 
distribution, points are generated or removed automatically during the simulation. 
 
 

APPLICATION TO NUMERICAL PERMEABILITY PREDICTION  
 

In order to perform accurate LCM filling simulations, physical parameters such as 
fabric permeability are needed. It is well known that the experimental measurement of 
that fabric property is very delicate.  

Usually a fluid is injected at constant pressure (or constant flow rate) through 
several layers of fabric of cross section A and length L. Then pressure loss ∆p and flow 
rate Q are measured, and the permeability K is calculated using Darcy’s law: 

 

pA
QLK
∆
µ

=                                                                               (4) 

 
The simulation of flow through a periodic cell should provide a reliable solution and 
avoid that experimental procedure. Numerically, an injection at constant flow rate could 
be performed. Then the pressure loss can be computed by the FPM code and the 
permeability is also given by Eqn. 4. Fig.3 shows the fabric cell considered here for 
benchmark purpose (Belov et al, 2004). It is bounded by a box in contact with yarns that 
defines the computational domain. Shell elements surrounding the fiber tows prevent 
the particles from escaping the domain with proper contact. Also particles are not 
allowed to penetrate the tows. Finally the tows are considered to be rigid and fixed in 
space. The porosity of such a domain is 0.36.  
Starting from an initially unfilled cavity, the domain is automatically filled by particles. 
The inflow velocity is constant and equal to 0.01 m/s. The fluid viscosity is constant 
and equal to 0.01 Pa.s. The computed pressure loss is ∆P= 417,6 Pa giving a saturated 

permeability of 2.28 ×10-10 m2. Computations last around 20 minutes with a state of 
the art PC. 

34



The 8th International Conference on Flow Processes in Composite Materials (FPCM8) 
Douai, FRANCE - 11 – 13 July 2006 

According to Belov et al., the saturated permeability of a single layer of such fiber 

reinforcement is in between 2.6 ×10-10 m2 and 3.5 ×10-10 m2 using the Lattice 

Boltzmann Method (LBM). Measurements provided values between 1.34 ×10-10 m2 

and 1.49 ×10-10 m2.  
The FPM code provides results in good agreement with experimental data. 
 

 
Fig. 4 : Fabric unit cell and domain used for the calculations 

 

 
Fig.5 : Computed flow patterns and pressure field (blue spots are contact zones not 

wetted by the fluid) 
 
 

CONCLUSION 
 
FPM solves for compressible and incompressible flow problems and can be coupled to 
structural FE codes. An important feature regarding polymer composites manufacturing 
science is that chemical reactions, heat transfer, temperature dependent viscosity can be 
handled. To illustrate the potential of the code, the case of numerical permeability 
prediction of a fabric unit cell has been presented and compared with existing 
experimental data. The FPM code provides results in good agreement with experiments. 
Current work focuses on flow-induced fiber deformation.  
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