Wetting and other interfacial phenomena during RTM

Matthew Grasinger

Air Force Research Laboratory Materials & Manufacturing Directorate

email: matthew.grasinger.1@afrl.af.mil

AFRL AIR FORCE RESEARCH LABORATORY

Resin transfer molding

THE AIR FORCE RESEARCH LABORATORY

AFRL

Resin transfer molding

THE AIR FORCE RESEARCH LABORATORY

Void formation during resin infusion

THE AIR FORCE RESEARCH LABORATORY

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited

Void formation during resin infusion

THE AIR FORCE RESEARCH LABORATORY

Void formation during resin infusion

Same porosity

Different performance

AFRL

Tow permeability, void formation, and void transport

... as a function of

- Processing conditions and "flow schedule"
 - Inlet pressure/flow rate, temperatures, etc.
- Tow geometry and fiber packing
- Resin rheology
 - Viscosity (as a function of time and temperature), shear thinning/thickening, etc.
- Degree of saturation
- Resin surface tension
- Fiber wetting and surface chemistry
 - What role does sizing play?
 - ... electrowetting? Electrowetting schedule?

Tow permeability, void formation, and void transport

... as a function of

- Processing conditions and "flow schedule"
 - Inlet pressure/flow rate, temperatures, etc.
- Tow geometry and fiber packing
- Resin rheology
 - Viscosity (as a function of time and temperature), shear thinning/thickening, etc.
- Degree of saturation
- Resin surface tension
- Fiber wetting and surface chemistry
 - o What role does sizing play?
 - o ... electrowetting? Electrowetting schedule?

AFRL

 $f\left(x,v,t
ight)\equiv ext{Probability density of particle at 'x', with velocity 'v', at time 't'}$

Continuous Boltzmann equation

$$\frac{\partial f}{\partial t} + v \cdot \frac{\partial f}{\partial x} + \frac{F}{m} \cdot \frac{\partial f}{\partial v} = \Omega(f)$$

Lattice Boltzmann equation

$$f_k \left(x + \xi_k \Delta t, t + \Delta t \right) - f_k(x, t) + \tilde{F}_k = \Omega_k \left(f \right)$$

AFRL

Lattice Boltzmann method

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited

AIR FORCE RESEARCH

- Simulate both fluids on separate lattices
- Calculate order parameter

$$\phi = \frac{\rho^{(1)} - \rho^{(2)}}{\rho^{(1)} + \rho^{(2)}}$$

- Define a free energy functional based on the order parameter
 - Immiscible fluids: energy penalize gradients in the order parameter
- Momentum is transferred to each fluid via gradients in free energy

Blue:
$$\phi = -1$$
Red: $\phi = 1$

Bulk fluid thermodynamics

$$\Psi = \int_{V} \left[\psi_{\rm b} + \psi_{\rm g} \right] \mathrm{d}V = \int_{V} \left[c_{\rm s}^{2} \rho \ln \rho + \frac{A}{4} \left(\phi^{2} - 1 \right)^{2} + \frac{\kappa}{2} (\nabla \phi)^{2} \right] \mathrm{d}V$$
Recall:
$$\phi = \frac{\rho^{(1)} - \rho^{(2)}}{\rho^{(1)} + \rho^{(2)}}$$
Penalizes mixing
of fluids
Penalizes mixing
$$\xi = \sqrt{\kappa/A}$$

THE AIR FORCE RESEARCH LABORATORY

Bulk fluid thermodynamics

$$\Psi = \int_{V} \left[\psi_{\rm b} + \psi_{\rm g} \right] \,\mathrm{d}V = \int_{V} \left[c_{\rm s}^2 \rho \ln \rho + \frac{A}{4} \left(\phi^2 - 1 \right)^2 + \frac{\kappa}{2} (\nabla \phi)^2 \right] \mathrm{d}V$$

Interface thermodynamics

$$\gamma_{12} = \int_{-\infty}^{\infty} \left[\frac{A}{4} \left(\phi^2 - 1 \right)^2 + \frac{\kappa}{2} (\nabla \phi)^2 \right] \mathrm{d}x = \sqrt{\frac{8\kappa A}{9}}.$$

Equilibrium surface energy between two fluids

(Assuming flat interface between fluids at x = 0)

THE AIR FORCE RESEARCH LABORATORY

Surface thermodynamics

$$\gamma_{12} = \int_{-\infty}^{\infty} \left[\frac{A}{4} \left(\phi^2 - 1 \right)^2 + \frac{\kappa}{2} (\nabla \phi)^2 \right] dx = \sqrt{\frac{8\kappa A}{9}}$$
$$\Psi_s = \int_A \psi_s \, dA = -\int_A h \phi_s \, dA$$
$$\gamma_{s1} = \frac{\gamma_{12}}{2} \left[1 - (1 + \Omega)^{3/2} \right]$$
$$\gamma_{s2} = \frac{\gamma_{12}}{2} \left[1 - (1 - \Omega)^{3/2} \right]$$
$$\Omega = h \sqrt{2/(\kappa A)}$$

Equilibrium surface energy between two fluids (Assuming flat interface between fluids at x = 0)

Free energy at solid boundary (h > 0, fluid 1 is preferred h < 0, fluid 2 is preferred)

Free energy and thermodynamics

Can relate model parameters to surface tension and contact angle

Degrees of incompatibility

Degrees of wetting

THE AIR FORCE RESEARCH LABORATORY

AIR FORCE RESEARCH LABORATORY

THE

"Permeability" depends on wettability

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited

AIR FORCE RESEARCH LABORATORY

- Simulations reproduce expected scaling
 - Inversely proportional to viscosity
 - Proportional to pressure
 - Somewhat insensitive to surface tension
- Can we use simulations to inform capillary pressure?

"Capillary pressure"

"Permeability" depends on wettability

AFRL

THE

Void formation: where and why

80 deg, incompatible

Void formation: where and why

90 deg, neutral

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited

Void formation: where and why

100 deg, wetting

THE AIR FORCE RESEARCH LABORATORY

Surface tension and its interplay

Outlook

- Realistic fluid parameters, fiber volume fraction, boundary conditions
- Unstable for high density ratio + high viscosity ratio + high volume fraction
 - Mesh refinement
 - "Free surface" idealization
- Extend to 1) non-Newtonian fluids (e.g. shear thinning) and
 - 2) electrowetting
 - Carbon fibers are conductive; apply voltage difference?
 - Electrowetting is underexplored for modifying surface interactions during processing
 - May require micromechanical models to determine electrical response of resin
 - Polarization and electrostatic Coulomb forces
 - Surface tension

Acknowledgements / questions

• Thanks, Air Force Research Laboratory

Feel free to reach out about internships, fellowships, collaborations, etc. Students: HPC Internship program; NDSEG and SMART fellowships Postdocs: NRC & other opportunities

THE AIR FORCE RESEARCH LABORATORY