

Development of Characterization and Simulation Methods for Carbon Fiber Sheet Molding Compounds

D. Schommer, <u>M. Duhovic</u>, T. Hoffmann, F. Gortner, D. May, J. Hausmann, P. Mitschang, K. Schladitz, K. Steiner

The 15th International Conference on Flow Processes in Composite Materials, June 27-29, 2023 West Lafayette, IN, USA

- Introduction & Motivation
- Material and Process Characterization
 - Fiber orientation: Semi-finished product
 - Flow/filling characterization
 - Fiber orientation: Pressed specimens
- Process Simulation
 - Material model
 - Application
- Conclusions

Process Chain for Sheet Molding Compounds

Romanenko V, Duhovic M, et al. Advanced process simulation of compression molded carbon fiber sheet molding compound (C-SMC) parts in automotive series applications. Compos Part A Appl Sci Manuf 2022;157:106924. <u>https://doi.org/10.1016/j.compositesa.2022.106924</u>.

Process Simulation of Compression Molding

Hayashi S, Chen H, Hu W. Development of New Simulation Technology for Compression Molding of Long Fiber Reinforced Plastics using LS-DYNA®. 15th International LS-DYNA® Users Conference https://www.dynalook.com/conferences/15th-international-Is-dyna-conference/composites/development-of-new-simulation-technology-for-compression-molding-of-long-fiberreinforced-plastics-using-ls-dyna-r

Fiber orientation: Semi-finished product

© Leibniz-Institut für Verbundwerkstoffe GmbH

In-Situ Measurement of Fiber Orientation

© Leibniz-Institut für Verbundwerkstoffe GmbH

In-Situ Measurement of Fiber Orientation

In-Situ Measurement of Fiber Orientation

Flow/filling characterization

Flow/filling characterization: Constant area

Gemein

Flow/filling characterization: Constant mass

© Leibniz-Institut für Verbundwerkstoffe GmbH

COM

Fiber orientation: Pressed specimens

Material & Process

Characterization

Process Simulation

Conclusions

Histograms and average FOT information of short shot specimens for press closing velocity of 3.0 mm/s

Material model structure

Introduction

Motivati

Material & Process Characterization

Process Simulation

Conclusions

Arbitrary-Lagrangian-Eulerian (ALE) – Suitable for the representation of bodies that combine the properties of fluids and solids.

Calculation in two steps:

 Lagrangian step:
Calculation of deformation in a Lagrangian formulation

2. Advection step: Remapping of element state variables back onto the reference

Main difference to Eulerian method: ALE allows a movement and deformation of reference mesh.

mesh.

Fiber orientation model

Orientation of an ellipsoid particle in an infinite Newtonian fluid

$$\frac{DA}{Dt} = (W \cdot A - A \cdot W) + \xi (D \cdot A + A \cdot D - 2\mathbb{A}; D) + 2C_i \dot{\gamma} (I - 3A)$$

Folgar-Tucker-Equation (1984) Developed for injection molding

Α	=	Fiberorientation Tensor 2. Order $A = \langle pp \rangle$	D	Ш	Def
A	Ш	Fiberorientation Tensor 4. Order	ξ	I	Geo
W	=	Vorticity Tensor 2. Order		Π	Unit

D	=	Deformation Tensor 2. Order
ξ	=	Geometry Factor 2. Order
	=	Unit Tensor 2. Order

Fiber orientation model (implemented in LS-DYNA®)

Model input parameters

	Intro	duction	Motivation		Characteriz	zation	Process Simulation	on Conclusions	
Μ	Materia	NewID Comm Use *Parameter Comm TITLE Umat Elastic-plastic Fiber O 1 MID RO 1	r-defined materia MatDB RefBy nent *MAT_USER_DEFINED_MATERIA Orientation MT LMC NHV	Al model im	Accept Delete terialmodel_Polynt_12K	ed in LS-DY	NA.	RO: Combined density of matrix and fibers MT: User Material ID LMC: No. of material constants to be defined NHV: No. of history variables constants to be output	
osite.com		3 2400.0000 2 IVECT IFAIL 1 0 ~ 0 0 Repeated Data by Button an 3 P1 P2 1 3.000000E8 0 0 0	41 32 42 ITHERM IHYPER IEOS 0 \sim -2 \sim od List P3 P4 P5 100000000 6.667000E7 0.0	0 ~ 4 <u>LMCA</u> <u>UNUSED</u> 0 0 <u>P6</u> <u>P7</u> 0.5 0.5	3 <u>UNUSED</u> 0 <u>P8</u> 0			P1-P8: The first 8 (of 26) user defined material parameters	
ww.thefutureiscomp		1 3.000000E8 0 100000 2 0 0 0.025 0 3 100000.0 9 10 11 4 11 0 0 0 Reneated Data by Button an Total Card: 1 Smallest ID: 3 L	1000 6.667000E7 0.0 0.5 0.5 0 101 1 0.005 250400.0 115315 1 7 8 0 0 0 0 0 115315 1 7 8 0 0 0 0 1 5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Data Pt. Replac Delete	1 e Insert Help	· ·	r r / / / / / /	modulus, Poisson's ratio, shear modulus, compression modulus, A_{xx} , A_{yy} , A_{zz} , A_{zy} , A_{xz} , A_{zy} , fiber ength, fiber diameter, Maier-Saupe Potential, fiber nteraction coefficientetc.	
5						∨ <	>		

Material model validation

© Leibniz-Institut für Verbundwerkstoffe GmbH

Does the Folgar-Tucker FO model work for C-SMCs?

Introduction

Gemeinschaft

www.thefutureiscomposite.com

Motivation

Material & Process Characterization

У

Process Simulation

Conclusions

Question: How well does the Folgar-Tucker model describe the fiber orientation behavior of C-SMCs?

Is the tendency correct?

 \rightarrow Short Shot with tool gap of 3 mm:

Same orientation tendency in simulation But: Stronger orientation behavior Reason: No resistance against movement caused by neighboring elements Can be influenced by: Calibration of material parameter Can be optimized by: Using/developing a more suitable fiber orientation model or_{-0.05}

0.10 -0.10

-0.075

-0.050

-0.025

0.000

0.025

0.050

27

Polarization camera image

Х

Application Demo: Automotive rear spoiler

Gemeinschaft

- Fiber orientation: Semi-finished product (Polarization imaging)
- Flow/filling characterization (Press rheometry constant area and constant mass)
- Fiber orientation: Pressed specimens (Polarization imaging)

A non-linear elastic piecewise plastic material model with fiber orientation backcoupling based on the Folgar-Tucker-Model + Maier-Saupe term has been implemented in LS-DYNA as a user-defined material model.

Initial qualitative validations show great results!

COM

oosite

www.thefutu

This project has been carried out in close collaboration with the Flow and Material Simulation Department of the Fraunhofer Institute for Industrial Mathematics (ITWM) within the framework of the High Performance Center Simulation and Software Based Innovation.

The polarization hardware used within this project has been developed with the help of the Electronic Imaging Department of the Fraunhofer Institute for Integrated Circuits (IIS).

www.thefutureiscomposite.com

Thank you for your attention!

Contact: Dr. Miro Duhovic Email: miro.duhovic@ivw.uni-kl.de Website: www.ivw.uni-kl.de Phone: +49 (0)631 2017 - 363

© IVW GmbH

This document is confidential. The information contained is the property of the Institute. This document may only be reproduced or disclosed to other parties with the consent of IVW GmbH. Transmission or disclosure does not constitute any intellectual property rights. The information contained does not constitute an offer.

Composite Aneurysm Clip

er & Sylvain Fotouk Fotsc

Photo: Thorsten