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Wave and Tidal Stream Energy — Worldwide Potential Estimated at 300GW*

Tidal Stream Energy potential estimated at 40% or 120GW

; The worldwide theoretical power of tidal energy, including tidal currents, has been estimated at around 1,200
= TWh/year.

Context:

Total global installed
wind energy capacity
in 2021 was 837 GW.

But.....wind is
intermittent.
Tidal energy is not !

Tidal Range {cm] F}

n e ™ 1ne 140

*QOcean Energy Systems, “An International Vision for Ocean Energy 2017,” International Energy Agency, 2017
https://www.ocean-energy-systems.org/news/oes-vision-for-international-deployment-of-ocean-enerqy/
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Tidal Stream Energy - Potential &
Current

| Feak eanterh
oy spring e
« | through lnner

B European Resource: >10GW deployable of
. highly predictable base load. | ) ot
EU Target by 2030: 1GW installed. e
#  Huge export potential 0 .
& Current deployment in UK: ~20 MW

4 UK: 40 MW CfD Round awarded in 2022

10 MW CfD Round announced in 2023

EXISTING PROJECTS:

A‘ru.um Hydro D R B I TA L m‘gxg‘

ey ” MITTTGITR  MARINE POWER

GRAND PASSA
280 kW

TOTAL ENERGY YIELD BEFORE 2017: >14 GWh, TOTAL ENERGY YIELD BETWEEN 2017-2019: >25 GWh

MEYGEN 1A FALL OF WARNESS
6 MW, >22 GWh 2 MW, >3 GWh

BLUEMULL SOUND
300 kW
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Wind Blades vs Tidal Blades (Equivalent Power)

SWEPT AREA

1 3
s C,pAvV

THRUST

@

Length Diameter Density Velocity MW
(m) (m) (kg/m3) (m/sec) Extracted

For the same power output (1MW):
* Tidal blades are approximately 4 times shorter than wind blades
* Tidal thrust is 4 times greater than for wind turbines (MN) Tidal 9.0 190 10250 25 1.0

e Both systems react roughly the same moment (MNm) e I o
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Composite Tidal Turbine Blades

Harsh marine environment
e Blades carry 4x higher thrust loads than wind blades
e Tidal current velocities vary w. depth & location
e Erosion & wear (sand, ice, floating trees)
e Waves and storms (esp. for floating turbines)

Blades require high strength (static and fatigue)
e Thick composite sections (can be over 100mm)
e Glass fibre or carbon fibre ?

ot

e Water ingress degradation important JRBITAL :
e Can be very costly to repair, underwater access

Blades must be fatigue-tested hydraulically (v. slow) > Orbital Marine Power’s 02 Blades
e Wind blades have low fundamental frequency & can (20m rotor diameter)

be tested resonantly using motor/offset weight
o Tidal blades are more like aircraft wing boxes (stiff)
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Energy transfer from kinetic to
potential via hydraulic circuit

C——)

Using Digital Displacement Technology®
from Danfoss.
https://digitaldisplacement.com/




FastBlade Tidal Blade Fatigue Test
Facility- (Opened 2022)

Blades up to 13m
long

Control room,
teaching space
and client rooms

ives : ' Universal
. “M&#N THE UNIVERSITY adaptor
HVdra“"CLa®s- of EDINBURGH FASTIEIR plate
cylinders T
Strong Wall
12m x2m L
loading area
. 800 Ipm
alstpy i : e . b — —_— regenerative
Boxbeam | = —— | e Sumping
reaction plane e . (under grating)
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First structural test
centre in the world
to have
regenerative
hydraulics - proving
to have c. 65%
efficiency,
compared to
standard hydraulic
system efficiency of
c. 25%
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Desigh and Manufacture of QED Tidal Rotor Blade

* New design
 2.8min length
* Skin- mainly CFRP with GFRP inner and outer layers
* CFRP-GFRP-steel internal stiffeners
e Stiffener thickness- 10mm steel+1mm GFRP+10mm CFRP
» Skin thickness- 15mm
* Monolithic fabrication using pre-pregs
* Weight approx 193 kg (200 kg welght saving)
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Powder Based Epoxy Composites - Cure, ol \
0.20 HEY soui L e N o
g :l' “ w ; X \\ "J'
* Powder melts on fibres (towpreg) at s I‘ olt ‘;:’; ‘»\ : x.\_‘\\\\ : i
low temperatures (c. 50°C), then curing € | TR N | 8 § o i
. T ] e 1
of the epoxy occurs at higher oo | S e
temperatures (heat activation). e e w wme m w
Ternmpershwe: (*C) Temperature (°C)
* Low minimal viscosity (low molecular Differential Scanning Calorimetry Parallel-plate Rheometry

weight) during melting phase: easy to
infiltrate and wet out thick fibre beds.

* Can also possess very high toughness
(depends on formulation)*

Typically Processing Cycle for GF/Powder-Epoxy

20 180°C Cure

Stage

* Low curing exotherm reducing the risk
of thermal runaway in thick sections. o

Temperature {°C}
=
2

Melt Stage

* Good potential for very thick Yo e e wm s e
composite sections (large wind blade e
sections - also tidal blades).

*Floreani, C. et al., “Mixed-Mode Interlaminar Fracture Toughness of Glass and Carbon Fibre Powder Epoxy Composites—For Design of Wind and
Tidal Turbine Blades”, Materials, 2021, https://doi.org/10.3390/mal4092103
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1 : Total enthalpy of
Powder Based Epoxy Composites ' Eepoxy resin system reaction (J/g)
. . Powder coating 78.0 - 137.7

* Commodity materials Powder coating 38.9

— Widely available, relatively inexpensive Powder coating 44.5

. . Resin transfer moulding (RTM) 447.0 — 469.0
 LittleornoV r during process

ttle o .O OCs P Od_uced gp Resin film infusion (RFI) 435.4
« Some unique processing advantages: Infusion 425.3

— Low viscosity and low exotherm Prepreg 560.0

— Through-thickness infiltration — no dry spots

— Heat-activated curing; melt and remelt without
initiating significant cure

— Consolidation of uncured structures, followed by
assembly and co-curing

Wind turbine blade
hub co-cured from 3
preconsolidated glass
fabric/ powder epoxy
semi-preg pieces

Maguire et al., Materials and Design, 2018. https://doi.orq/10.1016/j.matdes.2017.10.068
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Electrically-heated
ceramic mould tooling

13.0m wind turbine blades
manufactured by
EireComposites (Ireland)

"" § Powder epoxy 5.0m tidal turbine blade
) under static testing at NUI Galway




Swiss CMT — Industrial Partner cmt

unique technologies for sustainable composite applications

reinforcements resins

Powder Resins
* innovative
* solvent-free

* none-hazardous
¢ infinite shelf life

natural fibers (e.g. Flax)

o BIO Resins
U ,-/ > * bio sourced or
__ :”l !mo-degradable
* innovative
virgin fibers (GF, CF, AF...) . customized

applications in...
construction, building, mobility, automotive, industry, renewables...

Swiss CMT AG ‘ the next generation of composites 7 October 2024 17



THE UNIVERSITY of EDINBURGH
School of Engineering

L |
. f = [ aminate

HTeond _\_Hﬁf,;i;'g Dr. J::\)T;szlt\)/llaggulre

Fundamental
consolidation
assumption is that
inter-tow flow occurs
before intra-tow flow
— due to mismatch in
permeabilities

1. Inter-tow flow 2. Intra-tow flow
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Thick Section Consolidation — 1D Modelling

Coupled resin flow model and heat transfer model (with Centre

for Composite Materials, University of Delaware)
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Heat Transfer Model

Flow Model

Maguire et al., Part |, Composites Part A, 2020. https://doi.orq/10.1016/j.compositesa.2020.105969
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Thick Section Consolidation — 1D Modelling

Non-isothermal resin flow —
Darcy’s Law

— Inter-tow flow:

d K P o
at onT,a) | ' 1

— Intra-tow flow:

dl K, K,P,,
- . ) [ = L1
dt  ¢@n(T,a) KL +K;(I-L,)

Maguire et al., Part |, Composites Part A, 2020. https://doi.orq/10.1016/j.compositesa.2020.105969
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Maguire et al., Part |, Composites Part A, 2020. https://doi.orq/10.1016/j.compositesa.2020.105969

Thick Section Consolidation — 1D Modelling of 100-Ply Laminate

—— Simulation
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Experimental Validation

Three laminates manufactured

— 2 laminates with raw powder and UD glass-
fibre

— 1 laminate with triaxial glass-fibre semi-
preg

 Thickness change was measured by
an LVDT

— The LVDT was fixed on a supporting frame

 Temperature was measured in-plane
and out-of-plane using K-type
thermocouples

Maguire et al., Part Il, Composites Part A, 2020.
https://doi.orq/10.1016/j.compositesa.2020.105970
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Maguire et al., Part Il, Composites Part A, 2020, https://doi.orq/10.1016/j.compositesa.2020.105970

Time (hr)

60

50

40

30

20

10

0

High thermal gradients and cure gradients still present through the thickness,
especially around the gel point of the material.

Max Difference for Temperature (°C)
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Thick-Section Simulation — Modified Thermal Cycle
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Maguire et al., Part Il, Composites Part A, 2020, https://doi.orq/10.1016/j.compositesa.2020.105970 25
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2.5D FEA Modelling of Consolidation of WT Blade Sections*

*1D Flow, but 3D heat transfer

] 1D Flow “cube” Cm__c

L.,
Insulation
o~ Baggng
} Larminate
= e tring Mt
L x mmﬂmmmmmwmﬂn‘m
Section of blade root ‘

Root segment of WT blade

Maguire et al., Composites Part A, 2022. https.//doi.orq/10.1016/j.compositesa.2022.107073 with ta pe ring thickness
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Thick Section Consolidation — 2.5D Modelling CmM=C

Convection Boundary Conditions on all surfaces
(oven processing)
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Maguire et al., Composites Part A, 2022. https.//doi.org/10.1016/j.compositesa.2022.107073
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2.5D Process Modelling by FEA (Standard Cycle)

Temperature (°C)

I t 355 'ff
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Deformed Var: U %;gggg
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155.712
152.342

148.973

Temp. [-\4 Centre of thick
section is just

reaching gel-point
when outer layers

L3 L3

Degree of Cure and thln SECtlon

Z Increment 355 0.999
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2.5D Process Modelling by FEA (Modified Cycle & BCs)

Temperature (°C)

7 Increment 280 126.856 Max Temp Diffo
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|
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Outlook for Powder Epoxy Composites in Tidal Blade Structures

Several Advantages:

* One piece moulding - no gluing of spars to skins = one shot cure, cost savings

 Low exotherm: reduces risks and allows quicker manufacturing, cost
reduction.

* Process modelling can reduce temp. and cure gradients.

 Powder and towpreg can be stored in a standard environment and ambient
temperature for an extended amount of time.

Major Disadvantage:

* Needs elevated cure (c. 180°C) — using ovens or electrically-heated tooling.
Large blade manufacturers want lower processing temperatures (as close to
room temperature as possible).
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CF/Epoxy Towpreg Manufacturing

* Towpreg manufacturing, then composite processing (AFP
robot). Possibility for H, tanks, other tape structures.

* Tapeline: Dry tow fed through 1) electrostatic powder
deposition, then 2) electrical heating for melting of powder
into dry tow to produce towpreg.

Feed Powder : Collection T oy
Reel Deposition Heaing Reel |™a/ \
b X - @“-+ b;_ii_—__—__—__—_;h——@ff hlﬁé“‘-a__,//
7 Chamfered
Guide Roller
Roller Murat Celik paper at 9.30am

Robert et al., Composites Part B, 2020, https://doi.org/10.1016/j.compositesb.2020.108443

Celik et al., Composites Part A: Applied Science and Manufacturing, 2023,
https://doi.org/10.1016/j.compositesa.2022.107285
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Jiang, H. et al., Composites Part B: Engineering, 2022
https://doi.orqg/10.1016/j.compositesb.2022.109687
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End of Life Problem for Wind Turbine Blade Composites

Wind turbine blades are currently manufactured from glass and carbon fibre epoxy, a
thermoset polymer composite that cannot be recycled. With increased usage comes

increased waste.
We mustn’t repeat the same mistakes with tidal turbine blade composites.

22/00.000 Projected Annual Turbine Blade Waste

20,00,000 —
Forecast 2 million

tonnes annually of end
15,00,000 of life blade waste by
2050

TONNES

10,00,000

5,00,000

..lllllIIHHHH
ookt RAUUUARARRRRRRAARARRRA

2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 2048 2050 260,000 tonnes

Manufacturing + Service End-of-life

Liu, P.and C. Y. Barlow (2017). "Wind turbine blade waste in 2050." Waste
Management 62: 229-240.
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Reactive Processing of TPCs — “Infusible” Thermoplastics

100000

10000 - PEE
— PMMA z S
0 1000 - ) .ﬂ ..PA 12 PEKK
(] Melt processing of 5. PA@ &PEl "Q
&. thermoplastic polymers PBT

100
>
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v o | Reactive processing
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L 1
'~ ) wnylester
> _ S _epo
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?J 0.1 --...._,;::_o_ves er

0,01 - . :

Reactive processing of
thermoplastic resins
0,001 : : : : ; : :
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K. Van Rijswijk, H. Bersee, “Thermoplastic composite wind turbine blades,” TU Delft, 2007
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Liquid Thermoplastic (TP) Resin Technology

Acrylic is an
amorphous TP,
but can be
alloyed with
other TPs to
improve
solvent
resistance

L
L]

10000
Thermoplastics

100

. Honey

Thermosets

Viscosity (Pa.s)

001 4+ Elium® Advantages of Elium®:
milk » Reactive TP resin based on acrylic
ater technology
0.0001 - i
Low-viscosi
« Suited to vacuum-assisted resin
ELIUM -'l .
= ankEma transter moulding (VaRTM) and

resin transfer moulding (RTM)

* Low-cost: —~£18 per kg




Spanish LM Wind Power Has Released the World's Largest 100%

1518 NI G/ BN AIE LS Recyclable Wind Turbine Blade
School of Engineering

Share on oo@@

LM Wind
Power
Unveil 62m
Thermoplastic
Wind Blade
(March 2022)

by Directindustry
March 17, 2022 f 2 mins / Updated on March 21, 2022

As part of the ZEBRA project (Zero wastE Blade ReseArch), the 62-meter wind turbine blade is made of thermoplastic compaosite
that uses Arkema’s Elium® resin and new high-performance fiberglass materials frem Owens Corning. The prototype is said to
be 100% recyclable.
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Benchmarking Study - Acrylic/Glass fibre Composite
vs Epoxy/Glass Fibre Composite

Mechanical Characterisation Mechanical Properfies

! 2 3 1.Transverse tensile strength & modulus
I 1 1 2.Longitudinal flexural strength & modulus
. T T — T . 3.Transverse flexural strength & modulus
~ 4.Short beam shear strength
5
4 2 5.Mode-l interlaminar fracture toughness
=~
l T | | Thermomechanical Properties
| 6. Damping capacity (tan delta) & glass
Thermomechanical Characterisation transition temperature
———o
6 ‘
I_f—‘l‘_l

Obande et al, Materials & Design, 175, (2019) 107828, https://doi.orq/10.1016/j.matdes.2019.107828
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Materials & Fabrication Method

Materials:
* Resins
—  Elium®1880 (Arkema)
— SR 1710 (Sicomin Epoxy
Systems)

 Reinforcement
— 646 gsm non-crimp glass fabric

(Ahlstrom-Munksjo)

Method:

 Technique
— Vacuum infusion at room

temperature
 Laminate specifications

— Size: 485 mm x 485 mm X 4 mm 04T //?/-9:’;%%22@

— Stacking sequence: [0]4 \/ SE— Y, \; 285 mm /

— ID: GF/Acrylic and GF/Epoxy GF/Acrylic Infusion GF/Epoxy Infusion
Saturation time: 5.5 minutes Saturation time: 26.7 minutes

Note: Numbers represent time (min) at marked positions.

485 mm
5
i
485 mm

Obande et al, Materials & Design, 175, (2019) 107828, https://doi.orq/10.1016/j.matdes.2019.107828
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Benchmarking Study (Acrylic Composite vs Epoxy
Composite)

160

®m GF/acrylic ® GF/epoxy
140

+48%

120
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80
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20

Tensile Tensile Flexural Flexural Flexural Flexural  Short beam Interlaminar Damping Glass
strength modulus strength modulus strength modulus shear fracture capacity transition
(tran.) (tran.) (long.) (long.) (tran.) (tran.) strength toughness temperature
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Water Absorption of GF/Acrylic Composites

a) 4o b) 1000
) ] Dry_= Aged ) Dry 5 Aged
2 | BE = 5 800 | After 3 months
=] [t o] . . .
g5 = = £ 600 | immersion in sea
a 20 | aa B o O °
2O = e = water at 50°C:
2= = & 2400
= 10 | EER +1%i = oo
2 LA 2 2 - .
< % "‘mﬁ < Both GF/Acrylic and
© GF/ GF/ 0 GF/ GF/Acrylic-PPE
c) Acrylic  Acrylic-PPE Epoxy d} Acrylic  Acrylic-PPE Outperform GF/Epoxy
10 } = Dry = Aged _ a0 f mDry =1Aged in terms of tensile
5 I -EJ"I . .
3 g | 22 E 0 | strengtt} retentlcojn, in
= -5 | 22 o~ both 0 " and 90
w 6 e
@0 = 2o . .
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e 9% e
j% > | % ‘?% 10 |
= 0
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Devine, M. et al., “Seawater Ageing of Thermoplastic Acrylic Hybrid Matrix Composites for Marine Applications”, Composites Part B:
Engineering, IN PRESS, June 2023
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Thermal reshaping for reuse of acrylic composites

P The ends of the YT OB T,

: = laminate were i i & :
LN trimmedand | SELM
designated the ; i ‘_‘ ]
A 2-mm-thick glass- i x Rx0 (virgin

reinforced L-shaped & =y {/ reference) : RX ] / Q

lammate was resm-mfused material.
-...atroom temperature. ¢\ A= f

@ ................................................................................................................................................................................ , 380 mm (\V
: The flattenec.i laminate w.as cut into two The L-shaped portion of
: pieces. One piece was designated the Rx1 : the laminate was

)~ o material and the other was subjected to : : flattened by subjecting it |
/ Z 7/ further reprocessing as detailed in Step 5. 4_,_ to 1 thermal cycle on a =

ssan .-|-. ....................................................................................................................................................... ‘.: J— :::I:::l::"::.::.l::l:::.::“:l::l-::I:::l::"::.::“:l:::::.‘
@ 3 more reprocessmg cycles S material desamations
/ ]?esyrved 7/ The portion of the laminate '

reserved from Step 4 was subjected 57 [ ;" 7‘/

to 3 additional thermal cycles to

= - ) _ =7
C K= // 7/ simulate repeated reprocessing. | i Lf/
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Obande et al, Composites Part B: Engineering, 2023, https://doi.orq/10.1016/j.compositesb.2023.110662
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Thermal reshaping for reuse of acrylic composites

Flexural Modulus, GPa

Flattening the 90° bend
and re-processing
actually increases the
mechanical properties,
when the “seam” is not
included.

Rx0 means original props; Rx1_NS means flattened and reprocessed once with No Seam etc.

Obande et al, Composites Part B: Engineering, 2023, https://doi.orq/10.1016/j.compositesb.2023.110662
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Thermal reshaping for reuse of acrylic composites

B Flexural Strength (MPa) O Flexural Modulus (GPa) m Flexural Strength (MPa) O Flexural Modulus (GPa)
100 10
e (E) TeiathiRivalBNL NG Vol 0 © (f) *relative to Rx4_NS values =
{°] © &0 o
— o
S 80 {8 @ = 80 ¢ 8 O
£ == E
D 40 163 260 | 6 3
& 40 g N 3’; g2 B 40 r 2 % s =
® 5 CE T & % =
5 © “; Q‘Y ‘; 5 | Dﬂ_j — — >3<
X 20 o a Mol 12X 20 L L L > B
L = X o T W O ) O o
H- oy 10 o B L N ~ =
0 = = LO B 0 0 ol ~ r~ ~ 0
Rx1_NS Rx1_S  Rx1_S (flipped) Rx4_NS Rx4_S  Rx4_S (flipped)

Flattening and re-processing reduces the mechanical properties by 5-10%, when the “seam” is included.
“Flipping” the seam to the compression side of the specimen reduces the flexural strength by 30% after
1 cycle and by 60% after 4 cycles. Specimen modulus is not strongly affected by “flipping”.

Obande et al, Composites Part B: Engineering, 2023, https://doi.orq/10.1016/j.compositesb.2023.110662
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Outlook for Infusible Thermoplastic Composites in Tidal Blade Structures

Several Advantages:

* Room temperature infusion means that existing mould tooling and
facilities can be used — no cost disadvantage.

* Should be a drop-in epoxy resin replacement.

* Thermal and other types of welding can replace adhesive bonding.

* Blades can be recycled by various methods at end of life.

Possible Disadvantage:
* Exotherm needs to be controlled especially in variable-thickness parts.
* Long-term durability under water needs to be verified and improved.
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Processing of Composite Materials
for Large Structures in Marine Renewable Energy

Tidal Stream Energy Blades — FastBlade Facility

1
2 Powder Epoxy Composites

3. Infusible Thermoplastic Composites
4

Future Plans and Conclusions
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Maximising Tidal Energy Generation through Blade Scaling & Advanced Digital Engineering

UK Research
and Innovation

02 2 MW launched 2021

€10M project funded for 66 months by Horizon Europe/UK
10m blade, 2x 20m @ . .
628 m? swept area Government. Project started in January 2023,

“The project aims to reduce the levelised cost of energy of Orbital’s
tidal technology by 20% to €120 / MWh through a 70% increase in the
rotor swept area with a reliable, cost-optimised 13m length blade.”
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CoTide Programme Grant OXFORD

EPSRC (2023-2028)

Will develop and demonstrate holistic
integrated co-design processes for tidal
stream energy, that will evolve as we
develop under-standing of sensitivity to
design drivers.

Objectives

We will answer questions of how to

* achieve scalability of tidal stream energy
on the 2030 (100MW) and 2040 (>1GW)
time scales,

* embed the concepts of whole system or
co-design in design processes,

* ensure that tidal energy innovation is
sustainable and responsible.

Five Work Streams

WS 1 — Device Hydrodynamics

WS 2 — Composites & Rotor Materials

WS 3 — Structures & Reliability

WS 4 — Metocean, Resource & Environment
WS 5 — Co-design & Optimisation

University of

Strathclyde
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Conclusions

- Tidal stream energy is an emerging source of predictable renewable
energy — new test facilities (FastBlade) and design methods needed.

- Powder epoxy composites are an advantageous material for
processing of thick section structures, but high temperature
processing may limit their use in large blade structures.

- Infusible room temperature acrylic thermoplastics are an alternative
to epoxy for large-scale blade structures, with the improved potential
for recycling and re-use at end of life.

- New UK and EU research projects are focussed on development of
larger tidal energy blades, new more sustainable composite processes
and improved design software.
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Material Modelling
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Process Modelling Typical WT blade

process cycle

Investigating the process cycle involves separate
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