

Institute for Materials and Processes Processing of Composite Materials for Large Structures in Marine Renewable Energy (Keynote Lecture)

Prof. Conchúr M. Ó Brádaigh

School of Engineering, University of Edinburgh, Scotland, UK

Flow Processes in Composite Materials 15, Purdue University, USA

June 28th 2023

Processing of Composite Materials for Large Structures in Marine Renewable Energy

1. Tidal Stream Energy Blades – FastBlade Facility

Institute for Materials and Processes

- 2. Powder Epoxy Composites
- 3. Infusible Thermoplastic Composites
- 4. Future Plans and Conclusions

Processing of Composite Materials for Large Structures in Marine Renewable Energy

1. Tidal Stream Energy Blades – FastBlade Facility

Institute for Materials and Processes

- 2. Powder Epoxy Composites
- 3. Infusible Thermoplastic Composites
- 4. Future Plans and Conclusions

Wave and Tidal Stream Energy – Worldwide Potential Estimated at 300GW* Tidal Stream Energy potential estimated at 40% or 120GW The worldwide theoretical power of tidal energy, including tidal currents, has been estimated at around 1,200 TWh/year.

Context:

Total global installed wind energy capacity in 2021 was 837 GW.

But…..wind is intermittent. Tidal energy is not !

**Ocean Energy Systems, "An International Vision for Ocean Energy 2017," International Energy Agency, 2017 <https://www.ocean-energy-systems.org/news/oes-vision-for-international-deployment-of-ocean-energy/>*

Tidal Stream Energy - Potential & Current

European Resource: >10GW deployable of highly predictable base load. **EU Target by 2030:** 1GW installed. Huge export potential **Current deployment in UK:** ~20 MW **UK:** 40 MW CfD Round awarded in 2022 10 MW CfD Round announced in 2023

Wind Blades vs Tidal Blades (Equivalent Power)

Composite Tidal Turbine Blades

Harsh marine environment

- **Blades carry 4x higher thrust loads than wind blades**
- **Tidal current velocities vary w. depth & location**
- **Erosion & wear (sand, ice, floating trees)**
- **Waves and storms (esp. for floating turbines)**

Blades require high strength (static and fatigue)

- **Thick composite sections (can be over 100mm)**
- **Glass fibre or carbon fibre ?**
- **Water ingress degradation important**
- **Can be very costly to repair, underwater access**

Blades must be fatigue-tested hydraulically (v. slow)

- **Wind blades have low fundamental frequency & can be tested resonantly using motor/offset weight**
- **Tidal blades are more like aircraft wing boxes (stiff)**

➢*Orbital Marine Power's 02 Blades (20m rotor diameter)*

Regenerative Hydraulics - the USP

Energy transfer from kinetic to potential via hydraulic circuit

Using Digital Displacement Technology® from Danfoss. https://digitaldisplacement.com/

FastBlade Tidal Blade Fatigue Test Facility- (Opened 2022)

FASTBLADE Location

Fatigue Testing at 1Hz – 500 kW Tidal Blade

First structural test centre in the world to have regenerative hydraulics - proving to have c. 65% efficiency, compared to standard hydraulic system efficiency of c. 25%

Design and Manufacture of QED Tidal Rotor Blade

- **New design**
	- **2.8m in length**
	- **Skin- mainly CFRP with GFRP inner and outer layers**
	- **CFRP-GFRP-steel internal stiffeners**
	- **Stiffener thickness- 10mm steel+1mm GFRP+10mm CFRP**
	- **Skin thickness- 15mm**
	- **Monolithic fabrication using pre-pregs**
	- **Weight approx. 193 kg (200 kg weight saving)**

Processing of Composite Materials for Large Structures in Marine Renewable Energy

1. Tidal Stream Energy Blades – FastBlade Facility

Institute for Materials and Processes

- 2. Powder Epoxy Composites
- 3. Infusible Thermoplastic Composites
- 4. Future Plans and Conclusions

Powder Based Epoxy Composites And Cure

- **Powder melts on fibres (towpreg) at low temperatures (c. 50˚C), then curing of the epoxy occurs at higher temperatures (heat activation).**
- **Low minimal viscosity (low molecular weight) during melting phase: easy to infiltrate and wet out thick fibre beds.**
- **Can also possess very high toughness (depends on formulation)***
- **Low curing exotherm reducing the risk of thermal runaway in thick sections.**
- **Good potential for very thick composite sections (large wind blade sections - also tidal blades).**

**Floreani, C. et al., "Mixed-Mode Interlaminar Fracture Toughness of Glass and Carbon Fibre Powder Epoxy Composites—For Design of Wind and Tidal Turbine Blades", Materials, 2021,<https://doi.org/10.3390/ma14092103>*

Powder Based Epoxy Composites

- **Commodity materials**
	- **Widely available, relatively inexpensive**
- **Little or no VOCs produced during process**
- **Some unique processing advantages:**
	- **Low viscosity and low exotherm**
	- **Through-thickness infiltration – no dry spots**
	- **Heat-activated curing; melt and remelt without initiating significant cure**
	- **Consolidation of uncured structures, followed by assembly and co-curing**

Wind turbine blade hub co-cured from 3 preconsolidated glass fabric/ powder epoxy semi-preg pieces

Powder Based Epoxy Composite Blades

manufactured by ÉireComposites (Ireland)

Electrically-heated

Powder epoxy 5.0m tidal turbine blade under static testing at NUI Galway

Swiss CMT – Industrial Partner

unique technologies for sustainable composite applications

Thick Section Consolidation – 1D Modelling

Dr. James Maguire PhD 2019

Fundamental consolidation assumption is that inter-tow flow occurs before intra-tow flow – due to mismatch in permeabilities

Thick Section Consolidation – 1D Modelling

• **Coupled resin flow model and heat transfer model (with Centre for Composite Materials, University of Delaware)**

Thick Section Consolidation – 1D Modelling

Non-isothermal resin flow – Darcy's Law

– **Inter-tow flow:**

$$
\frac{dl}{dt} = \frac{K_1}{\varphi_1 \eta(T, \alpha)} \frac{P_{in}}{l}, \qquad l < L_1
$$

– **Intra-tow flow:**

$$
\frac{dl}{dt} = \frac{K_2}{\varphi_2 \eta(T, \alpha)} \cdot \frac{K_1 P_{in}}{K_2 L_1 + K_1 (l - L_1)}, \qquad l \ge L_1
$$

Maguire et al., Part I, Composites Part A, 2020. <https://doi.org/10.1016/j.compositesa.2020.105969>

Thick Section Consolidation – 1D Modelling of 100-Ply Laminate

200

180

160

140

120

100

80

60

40

20

 Ω

Ő

Φ

Temperatur

Maguire et al., Part I, Composites Part A, 2020. <https://doi.org/10.1016/j.compositesa.2020.105969>

Experimental Validation

- **Three laminates manufactured**
	- **2 laminates with raw powder and UD glassfibre**
	- **1 laminate with triaxial glass-fibre semipreg**
- **Thickness change was measured by an LVDT**
	- **The LVDT was fixed on a supporting frame**
- **Temperature was measured in-plane and out-of-plane using K-type thermocouples**

Thick-Section Simulation – Standard Cycle

High thermal gradients and cure gradients still present through the thickness, especially around the gel point of the material.

Maguire et al., Part II, Composites Part A, 2020,<https://doi.org/10.1016/j.compositesa.2020.105970>

Thick-Section Simulation – Modified Thermal Cycle

By modifying the process cycle, we can reduce these peaks significantly during the gelation period. Reduced drying time and increased ramp time.

Time (hr)

10

12 14 16 18 20 22 24 26

90

80

70

60

50

40

30

20

10

 Ω

Max Difference for Temperature (°C)

2.5D FEA Modelling of Consolidation of WT Blade Sections* *1D Flow, but 3D heat transfer

Thick Section Consolidation – 2.5D Modelling

EMSE

Maguire et al., Composites Part A, 2022. <https://doi.org/10.1016/j.compositesa.2022.107073>

2.5D Process Modelling by FEA (Standard Cycle)

Max Temp Diff. > 40°C

Centre of thick section is just reaching gel-point when outer layers and thin section have fully cured

Max DOC Diff. =0.48

2.5D Process Modelling by FEA (Modified Cycle & BCs)

Max Temp Diff. < 7°C

Modified cycle and two-sided heating used to reduce gradients. Local heating can be used for thick sections, thus saving energy and cost.

Max DOC Diff. = 0.07

Outlook for Powder Epoxy Composites in Tidal Blade Structures

Several Advantages:

- **One piece moulding - no gluing of spars to skins** → **one shot cure, cost savings**
- **Low exotherm: reduces risks and allows quicker manufacturing, cost reduction.**
- **Process modelling can reduce temp. and cure gradients.**
- **Powder and towpreg can be stored in a standard environment and ambient temperature for an extended amount of time.**

Major Disadvantage:

• **Needs elevated cure (c. 180°C) – using ovens or electrically-heated tooling. Large blade manufacturers want lower processing temperatures (as close to room temperature as possible).**

CF/Epoxy Towpreg Manufacturing

- **Towpreg manufacturing, then composite processing (AFP robot). Possibility for H² tanks, other tape structures.**
- **Tapeline: Dry tow fed through 1) electrostatic powder deposition, then 2) electrical heating for melting of powder into dry tow to produce towpreg.**

Robert et al., Composites Part B, 2020, <https://doi.org/10.1016/j.compositesb.2020.108443>

Çelik et al., Composites Part A: Applied Science and Manufacturing, 2023, <https://doi.org/10.1016/j.compositesa.2022.107285>

CF/Epoxy for "Dual Polymer" 3D Printing (with CF PA-6)

Processing of Composite Materials for Large Structures in Marine Renewable Energy

1. Tidal Stream Energy Blades – FastBlade Facility

Institute for Materials and Processes

- 2. Powder Epoxy Composites
- 3. Infusible Thermoplastic Composites
- 4. Future Plans and Conclusions

End of Life Problem for Wind Turbine Blade Composites

Wind turbine blades are currently manufactured from glass and carbon fibre epoxy, a thermoset polymer composite that cannot be recycled. With increased usage comes increased waste. Wind turbine blades are currently manufactured from glass and carbon fibre epoxy, a
thermoset polymer composite that cannot be recycled. With increased usage comes
increased waste.
We mustn't repeat the same mistakes with

Projected Annual Turbine Blade Waste

Liu, P. and C. Y. Barlow (2017). "Wind turbine blade waste in 2050." Waste Management 62: 229-240.

Reactive Processing of TPCs – "Infusible" Thermoplastics

Liquid Thermoplastic (TP) Resin Technology Acrylic is an

LM Wind Power Unveil 62m Thermoplastic Wind Blade (March 2022)

தாமாயி

Spanish LM Wind Power Has Released the World's Largest 100% **Recyclable Wind Turbine Blade**

Share on **OOO**

by Directindustry March 17, 2022 / 2 mins / Updated on March 21, 2022

As part of the ZEBRA project (Zero wastE Blade ReseArch), the 62-meter wind turbine blade is made of thermoplastic composite that uses Arkema's Elium® resin and new high-performance fiberglass materials from Owens Corning. The prototype is said to be 100% recyclable.

Benchmarking Study – Acrylic/Glass fibre Composite vs Epoxy/Glass Fibre Composite

Mechanical Characterisation

Thermomechanical Characterisation

6

Mechanical Properties

1.Transverse tensile strength & modulus 2.Longitudinal flexural strength & modulus 3.Transverse flexural strength & modulus 4.Short beam shear strength 5.Mode-I interlaminar fracture toughness

Thermomechanical Properties

6. Damping capacity (tan delta) & glass transition temperature

Obande et al, Materials & Design, 175, (2019) 107828, <https://doi.org/10.1016/j.matdes.2019.107828>

Materials & Fabrication Method

Materials:

- **Resins**
	- Elium®188O (Arkema)
	- SR 1710 (Sicomin Epoxy Systems)
- **Reinforcement**
	- 646 gsm non-crimp glass fabric (Ahlstrom-Munksjö)

Method:

- **Technique**
	- Vacuum infusion at room temperature
- **Laminate specifications**
	- Size: *485 mm* [×] *485 mm* [×] *4 mm*
	- Stacking sequence: *[0]⁸*
	- ID: *GF/Acrylic and GF/Epoxy*

Note: Numbers represent time (min) at marked positions.

Obande et al, Materials & Design, 175, (2019) 107828, <https://doi.org/10.1016/j.matdes.2019.107828>

Benchmarking Study (Acrylic Composite vs Epoxy Composite)

Obande et al, Materials & Design, 175, (2019) 107828, <https://doi.org/10.1016/j.matdes.2019.107828>

Water Absorption of GF/Acrylic Composites

After 3 months immersion in sea water at 50˚C:

Both GF/Acrylic and GF/Acrylic-PPE outperform GF/Epoxy in terms of tensile strength retention, in both 0 ˚ and 90 ˚ directions.

Devine, M. et al., "Seawater Ageing of Thermoplastic Acrylic Hybrid Matrix Composites for Marine Applications", Composites Part B: Engineering, IN PRESS, June 2023

Thermal reshaping for reuse of acrylic composites

Obande et al, Composites Part B: Engineering, 2023, <https://doi.org/10.1016/j.compositesb.2023.110662>

Thermal reshaping for reuse of acrylic composites

Flattening the 90° bend and re-processing actually increases the mechanical properties, when the "seam" is not included.

Rx0 means original props; Rx1 NS means flattened and reprocessed once with No Seam etc.

Obande et al, Composites Part B: Engineering, 2023, <https://doi.org/10.1016/j.compositesb.2023.110662>

Thermal reshaping for reuse of acrylic composites

Flattening and re-processing reduces the mechanical properties by 5-10%, when the "seam" is included. "Flipping" the seam to the compression side of the specimen reduces the flexural strength by 30% after 1 cycle and by 60% after 4 cycles. Specimen modulus is not strongly affected by "flipping".

Obande et al, Composites Part B: Engineering, 2023, <https://doi.org/10.1016/j.compositesb.2023.110662>

Outlook for Infusible Thermoplastic Composites in Tidal Blade Structures

Several Advantages:

- **Room temperature infusion means that existing mould tooling and facilities can be used – no cost disadvantage.**
- **Should be a drop-in epoxy resin replacement.**
- **Thermal and other types of welding can replace adhesive bonding.**
- **Blades can be recycled by various methods at end of life.**

Possible Disadvantage:

- **Exotherm needs to be controlled especially in variable-thickness parts.**
- **Long-term durability under water needs to be verified and improved.**

Processing of Composite Materials for Large Structures in Marine Renewable Energy

- 1. Tidal Stream Energy Blades FastBlade Facility
- 2. Powder Epoxy Composites
- 3. Infusible Thermoplastic Composites
- 4. Future Plans and Conclusions

янный

THE UNIVERSITY of EDINBURGH **School of Engineering**

Maximising Tidal Energy Generation through Blade Scaling & Advanced Digital Engineering

O2 2 MW launched 2021 10m blade, 2 x 20m ø 628 m^2 swept area

€10M project funded for 66 months by Horizon Europe/UK Government. Project started in January 2023.

"The project aims to reduce the levelised cost of energy of Orbital's tidal technology by 20% to €120 / MWh through a 70% increase in the rotor swept area with a reliable, cost-optimised 13m length blade."

EPSRC (2023-2028)

Will develop and demonstrate **holistic integrated co-design processes** for tidal stream energy, that **will evolve** as we develop under-standing of sensitivity to design drivers.

Objectives

We will **answer questions of how to**

- achieve scalability of tidal stream energy time scales,
- embed the concepts of whole system or co-design in design processes,
- ensure that tidal energy innovation is sustainable and responsible.

Five Work Streams

- WS 1 Device Hydrodynamics
- WS 2 Composites & Rotor Materials
- WS 3 Structures & Reliability
- WS 4 Metocean, Resource & Environment
- WS 5 Co-design & Optimisation

UNIVERSITY OF

Conclusions

- **Tidal stream energy is an emerging source of predictable renewable energy – new test facilities (FastBlade) and design methods needed.**
- **Powder epoxy composites are an advantageous material for processing of thick section structures, but high temperature processing may limit their use in large blade structures.**
- **Infusible room temperature acrylic thermoplastics are an alternative to epoxy for large-scale blade structures, with the improved potential for recycling and re-use at end of life.**
- **New UK and EU research projects are focussed on development of larger tidal energy blades, new more sustainable composite processes and improved design software.**

Acknowledgements

- **Prof Dilum Fernando, University of Edinburgh**
- **Dr Dipa Roy, Reader, University of Edinburgh**
- **Dr Eddie McCarthy, Senior Lecturer, University of Edinburgh**
- **Dr Fergus Cuthill, FastBlade Manager, 2021-**
- **Dr Sergio Lopez-Dubon, EU CoFund Fellow, 2020-**
- **Dr James Maguire, PhD student 2013-18**
- **Dr Winifred Obande, PDRA and PhD student, 2017-2021, Elizabeth Georgeson Fellow, 2023-**
- **Dr Ankur Bajpai, PDRA, 2020-2022**
- **Johns Manville, Arkema (industrial sponsors)**
- **EPSRC Future Composites Manufacturing Hub**
- **EPSRC Supergen Offshore Renewable Energy Hub**
- **European Union Horizon Europe Programme, 2023-2028**

Engineering and Physical Sciences Research Council

Institute for Materials and Processes Processing of Composite Materials for Large Structures in Marine Renewable Energy (Keynote Lecture)

Prof. Conchúr M. Ó Brádaigh

School of Engineering, University of Edinburgh, Scotland, UK

Flow Processes in Composite Materials 15, Purdue University, USA

June 28th 2023

Material Modelling

- **Cure Kinetics**
- **Relationship of T^g and degree of cure**
- **Powder Sintering**
- **Chemorheology**

$$
\frac{d\alpha}{dt} = \frac{(k_{\alpha 1} + k_{\alpha 2} + k_{\alpha 3}\alpha^m)(1 - \alpha)^n}{1 + \exp[C(\alpha - \alpha_c)]}
$$

$$
\frac{T_g - T_{g0}}{T_{g\infty} - T_{g0}} = \frac{\lambda \alpha}{1 - (1 - \lambda)\alpha}
$$

guinnam

$$
\frac{d\chi}{dt} = -\chi_0 \exp\left(\frac{C_{\chi1}[T - T_{\theta}]}{C_{\chi2} + T - T_{\theta}}\right)(\chi - \chi_{\infty})^B \qquad \eta = \eta_{g0} \exp\left(\frac{-C_{\eta1}[T - T_g(\alpha)]}{C_{\eta2} + T - T_g(\alpha)}\right)\left(\frac{\alpha_g}{\alpha_g - \alpha}\right)
$$

guinnam

Process Modelling

Investigating the process cycle

COMP SUZLON

Typical WT blade process cycle involves separate consolidation and cure cycles

> **Ramp to 120°C Cool to RT Ramp to 120°C Ramp to 180°C**