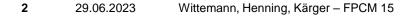


Fiber length and orientation dependent flow modeling in macroscopic injection molding simulations

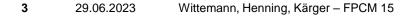

29th June 2023

FPCM 15

Florian Wittemann, Frank Henning, Luise Kärger

KIT - The Research University in the Helmholtz Association

www.kit.edu


Methods

Agenda

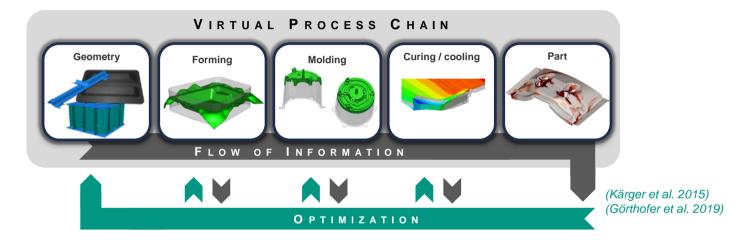
Results and Validation

Conclusion and Summary

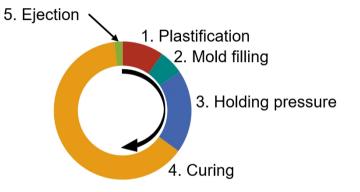
Methods

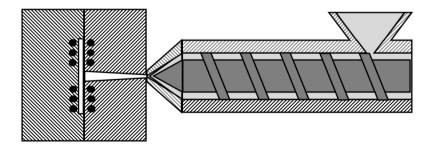
Results and Validation

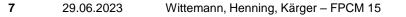
Conclusion and Summary


House of Competence

Integrated virtual process Chain


Benefits of a continuous CAF chain:


- Consideration of manufacturing effects and their influence on structural performance
- Initial verification of manufacturing
- Enabling iterative optimization over multiple simulation steps
 - \rightarrow Virtual design and process optimization
 - → Accelerated design loops to reduce development time and resources

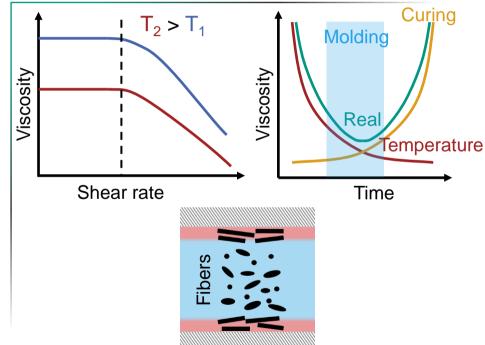


Injection molding process

- 1. Plastification
 - Temperature
 - Fiber length
- 2. Mold filling
 - Temperature
 - Voids
 - fiber orientation and length
- 3. Holding pressure
 - Voids
 - Shrinkage
- 4. Curing
 - Mechanical properties
 - Warpage
- 5. Ejection
 - Warpage
- 6. Cooling
 - Mechanical properties
 - Warpage

Material

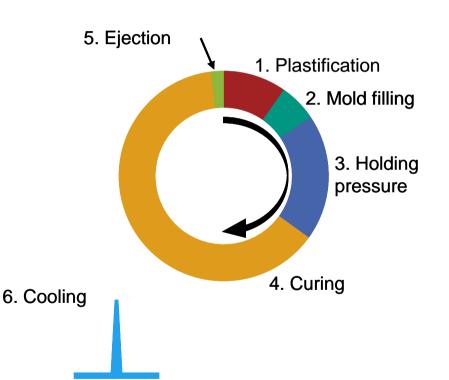
Eigenschaften


- Material is a suspension of matrix and fibers
- Raising temperature or shear rate lowers the viscosity
- Curing raises the viscosity
- Fiber orientation influences flow field

8

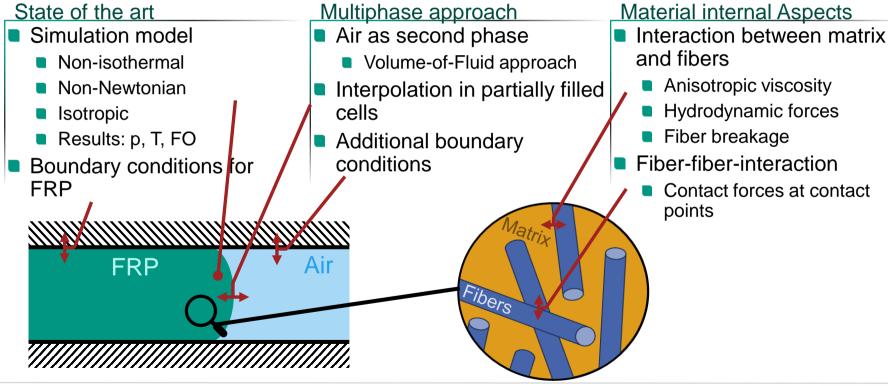
Flow field influences fiber orientation

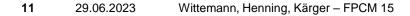
Result: complex flow behavior


Fließverhalten

Process phases

- 1. Plastification
 - Temperature
 - Fiber length
- 2. Mold filling
 - Temperature
 - Voids
 - fiber orientation and length
- 3. Holding pressure
 - Voids
 - Shrinkage
- Curing 4.
 - Mechanical properties
 - Warpage
- 5. Ejection
 - Warpage
- 6. Cooling
 - Mechanical properties
 - Warpage





Mold filling simulation

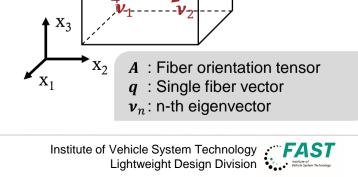
Results and Validation

Introduction

Methods

Agenda

 $(\boldsymbol{q}\otimes \boldsymbol{q})\psi(\boldsymbol{q})\mathrm{d}\boldsymbol{q}$


Restrictions and Approximations

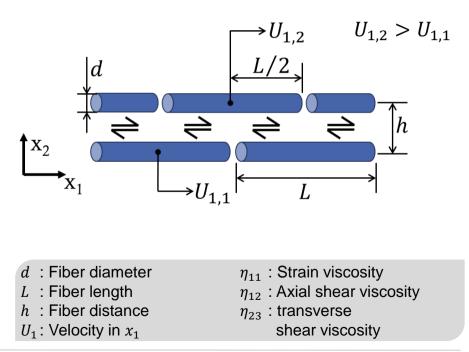
- Approaches for macroscopic level
 - Fiber orientation tensors (Advani and Tucker 1987)
 - Homogenized material model
- Use of standard models
 - Matrix viscosity (Castro and Macosko 1982)
 - Fiber orientation (Folgar and Tucker 1984, Wang et al. 2008)

X3

 X_2

- Curing (Kamal and Sourour 1973)
- Eigenvectors of the orientation tensors represent reference fibers (Wittemann et al. 2021)
 - Three fibers per cell
 - Eigenvalue is orientation probability
 - Reference fibers are perpendicular

 v_{2}


Anisotropic viscosity

Assumptions (Gibson 1989, Pipes et al. 1991)

- Fibers full orientated (transverse isotropic)
- Incompressible
- Fiber geometries are identical
- Variation of velocity for different direction viscosities
- Calculation of η_{11} , η_{12} and η_{23} based on microscopic model

Model visualization (Pipes et al. 1991)

Anisotropic viscosity

Scheme

- Formulation of transverse isotropic fluidity tensor (Pipes et al. 1991)
- Building a pseudo inverse viscosity tensors (Loredo and Klöcker 1997)
- Orientation averaging (Advani and Tucker 1987)
- Fourth order viscosity tensor as function of fiber orientation, length and volume fraction (Sommer et al. 2018, Wittemann et al. 2019)

Final Formulation

$$\eta^{\text{IV}} = (\eta_{11} - 4\eta_{12} + \eta_{23}) \mathbb{A} + \left(\frac{\eta_{11}}{3} + \eta_{23}\right) (A \otimes I + I \otimes A) + (\eta_{12} - \eta_{23}) (A \Box I + I \Box A) + (\eta_{12} - \eta_{23}) (A \Box I + I \Box A) + (\eta_{12} - \eta_{23}) ((A \Box I)^{\text{T}_{\text{R}}} + (I \Box A)^{\text{T}_{\text{R}}}) + \left(\frac{\eta_{11}}{9} - \eta_{23}\right) (I \otimes I) + \eta_{23} (I \Box I + (I \Box I)^{\text{T}_{\text{R}}})$$

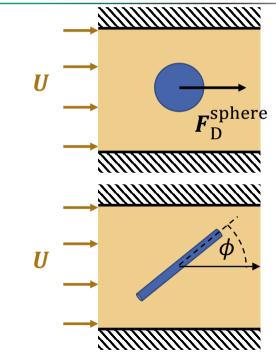
- A : Fourth order orientation η^{IV} tensor η_{11}
- A : Second order orientation tensor
- *I* : Unity tensor

- :Viscosity tensor
- : Strain viscosity
- : Axial shear viscosity η_{12}
- : transverse η_{23}
 - shear viscosity

Hydrodynamic forces

Force approximation

Stokes Flow for drag force: $F_{\rm D}^{\rm sphere} = 3\pi\eta_{\rm M} dU$

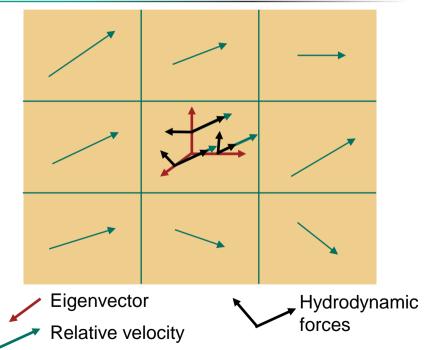

Approximation for fibers (Meyer et al. 2020) $F_{\rm D}^{\rm fiber} = 3\pi\eta_{\rm M} dk_{\rm D} U$ mit $k_{\rm D} = f(\phi, r, \alpha, \beta)$

Lift force similar (Meyer et al. 2020) $F_{\text{Li}}^{\text{fiber}} = 3\pi\eta_{\text{M}}dk_{\text{Li}}U$ mit $k_{\text{Li}} = f(\phi, r, \alpha)$

 $F_{\rm D}$: Drag force **F**_{Li} : Lift force : Velocity U η_M : Matrix viscosity d : Fiber diameter ф : Angle btw. fiber and U : Fiber aspect ratio

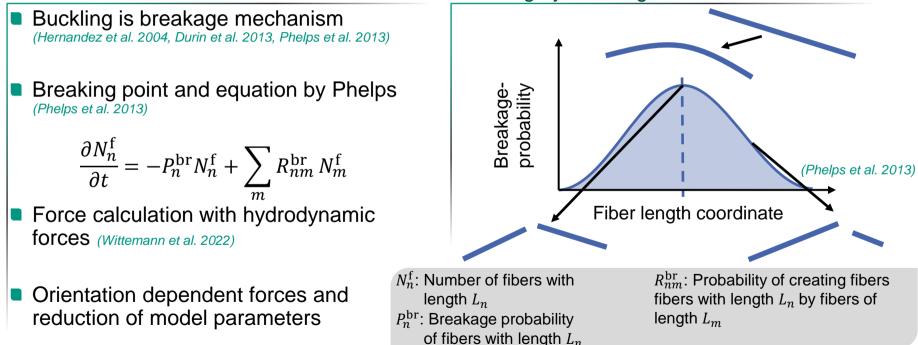
$$\alpha, \beta$$
: Fitting factors

Model illustration


Hydrodynamic forces

Application on macro scale (Wittemann et al. 2021)

- Fibers move with the velocity of the cell
- Calculation of relative velocity with neighbor cells
 - \rightarrow Number depends on fiber length
- 3 eigenvectors = 3 reference fibers
 →Individual angle for every eigenvector
 →Individual forces for every eigenvector


Model illustration

Fiber breakage

Model

Breaking by buckling

Fiber-fiber contact points

Theory

- Contact points according to Toll (Toll 1998)
- Invariants f and g need single fiber orientations
- Eigenvectors as reference fibers (Wittemann et al. 2021)
- Polynomial approach as function of eigenvalues (Wittemann et al. 2021)

$N_{\rm fc}$: Contact points	
f	, Inveriente	

 ν : Eigenvector

f, g : Invariants

- λ : Eigenvalue
- : Fiber volume fraction M : Coefficient matrix Φ
- : Single fiber vector

Equations

$$N_{\rm fc} = \frac{8}{\pi} \Phi r f + 4\Phi(g+1)$$

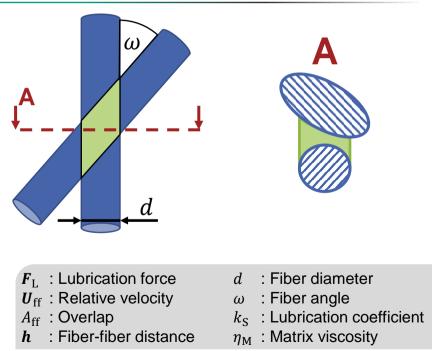
$$f = \int \int |\boldsymbol{q}_n \times \boldsymbol{q}_m| \psi(\boldsymbol{q}_n) \psi(\boldsymbol{q}_m) \mathrm{d} \boldsymbol{q}_n \mathrm{d} \boldsymbol{q}_m$$

$$g = \int \int |\boldsymbol{q}_n \cdot \boldsymbol{q}_m| \psi(\boldsymbol{q}_n) \psi(\boldsymbol{q}_m) \mathrm{d} \boldsymbol{q}_n \mathrm{d} \boldsymbol{q}_m$$

$$f = \sum_{n,m=1}^3 |\boldsymbol{v}_n \times \boldsymbol{v}_m| \lambda_n \lambda_m = (2\lambda_1 \lambda_2 + 2\lambda_1 \lambda_3 + 2\lambda_2 \lambda_3)$$

$$g = \sum_{n,m=1}^3 |\boldsymbol{v}_n \cdot \boldsymbol{v}_m| \lambda_n \lambda_m = \lambda_1 \lambda_1 + \lambda_2 \lambda_2 + \lambda_3 \lambda_3$$

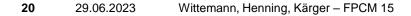
$$f, g = \sum_{n,m=1}^3 M_{nm} \tilde{\lambda}_n \tilde{\lambda}_m$$


Contact forces

Lubrication force

- Before and after fiber contact
- Proportional to matrix viscosity, relative velocity, fiber distance and overlap
- Approximation of overlap by average fiber angle (Wittemann et al. 2021)

 $\boldsymbol{F}_{\mathrm{L}} = \frac{k_{\mathrm{S}} \eta_{\mathrm{M}} \boldsymbol{U}_{\mathrm{ff}}}{\|\boldsymbol{h}\|} A_{\mathrm{ff}} = \frac{k_{\mathrm{S}} \eta_{\mathrm{M}} \boldsymbol{U}_{\mathrm{ff}}}{\|\boldsymbol{h}\|} \frac{d^2}{\sin(\omega)}$


Model

Institute of Vehicle System Technology

Karlsruhe Institute of Technolog

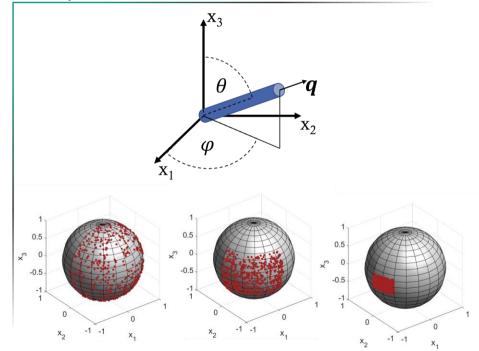
Karlsruhe Institute o

Introduction

Methods

Results and Validation

Conclusion and Summary

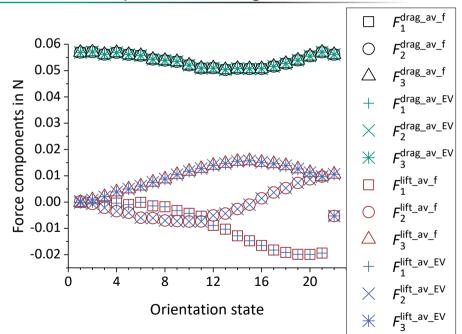

Numerical verification

Karlsruhe Institute of Technology

Single fibers as reference case

- Forces and contact points are verified by reference cases, built up with 500 individual fibers
- 22 different orientation states are considered
- Orientation tensors are directly calculated with the single fiber orientations

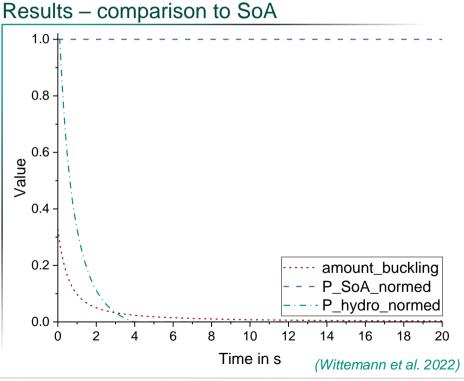
Examples


Hydrodynamic forces

Summary

- Comparison of averaged force on single fibers (f) and eigenvectors (EV)
- $U = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ m/s
- Fit perfectly (Wittemann et al. 2021)
- Force values contribute to the relation of orientation and velocity

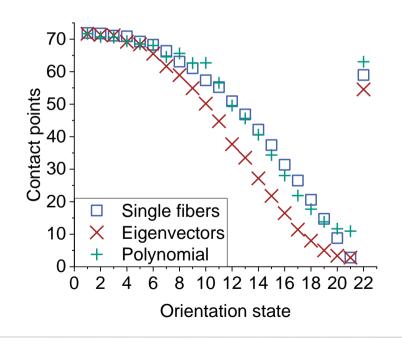
Results - comparison to single fibers



Fiber breakage model

Summary

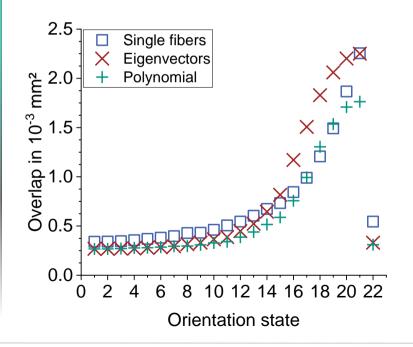
- Fibers under simple shear → reorientation due to shearing
- Number of buckling fibers decreases due to orientation
- Constant breakage probability for SoA
- Decreasing breakage probability of novel approach due to buckling amount and force calculation


Fiber-fiber contact points

Summary

- Results for aspect ratio 100
- Eigenvector approach fitted with factor $3\pi/8$ (Férec et al. 2009, Wittemann et al. 2021)
- Eigenvector approach predicts too low
- Polynomial approach creates best results

Comparison to single fibers


Fiber-fiber overlap

Summary

- Results for aspect ratio10
- Individual overlap and averaging for single fibers
- Average angle approximated with $\omega = 4/\pi f$ (Wittemann et al. 2021)
- Average overlap with average angle
- Polynomial approach creates best results

Comparison to single fibers

Experimental validation

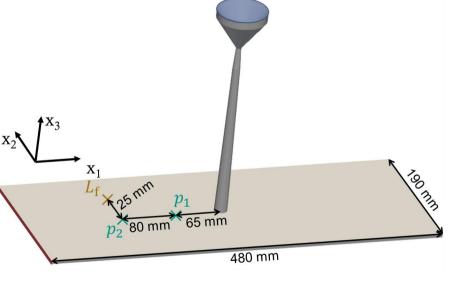
Material and Process parameters

Material

- 55 %-weight glass fiber filled phenolic
- Modeling non-Newtonian, anisotropic

Process

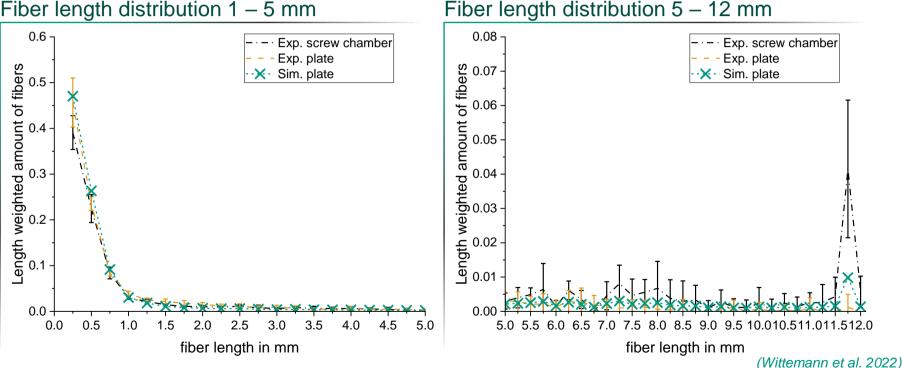
- Filling rate 150 cm³/s
- Tool temperature 185 °C


Recorded data

- Two pressure sensors in mold $(p_1 \text{ and } p_2)$
- Fiber length measured at $L_{\rm f}$

Experiments by Maertens (Maertens et al. 2021)

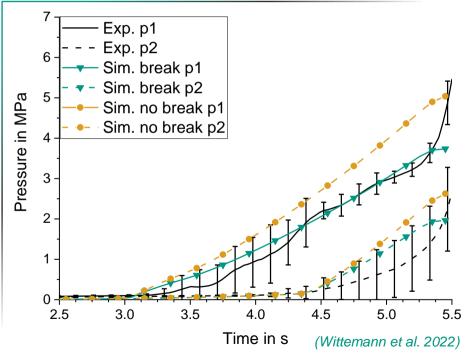
Institute of Vehicle System Technology

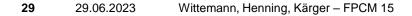


Model

Experimental validation

Fiber length distribution 1 - 5 mm


Experimental validation

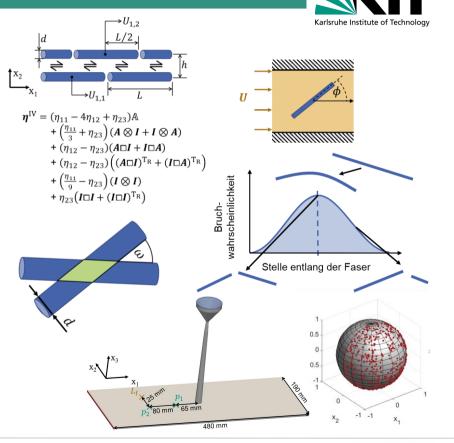


Summary

- Good results for fiber length distribution
- Good prognostication of pressure at p₁
- Simulated pressure too high at p₂
- Fiber breakage influences pressure results → fiber length is parameter of the anisotropic viscosity tensor

In-mold pressure

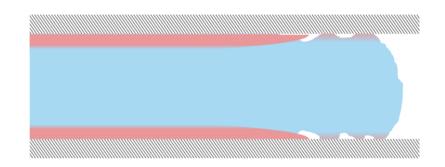
Agenda

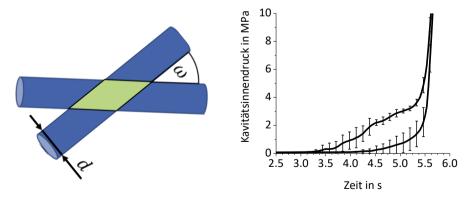

Results and Validation

Conclusion and Summary

Summary

- Novel simulation approaches for more detailed mold filling simulations
 - Anisotropic viscosity tensor
 - Calculation of hydrodynamic forces and fiber breakage
 - Calculation of fiber-fiber contact points and forces
- Application on macroscopic scale
- Good agreement of simulation results and experimental data




Institute of Vehicle System Technology

Conclusion and Summary

Next steps

- Wall slip
- Better formulation for temperature boundary conditions
- Usage of information about fiber-fiber contact points, forces and length distribution
- Probabilistic approaches to model process uncertainties

References

Advani and Tucker 1987

Advani SG. Tucker CL. The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites, Journal of Rheology 1987;31(8):751-84.

- Castro and Macosko 1982 Castro JM, Macosko CW. Studies of mold filling and curing in the reaction injection molding process. AIChE J. 1982;28(2):250-60.
- Durin et al. 2013

Durin A, Micheli P de, Ville J, Inceoglu F, Valette R, Vergnes B. A matricial approach of fibre breakage in twin-screw extrusion of glass fibres reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing 2013;48:47-56.

Férec et al. 2009

Férec J, Ausias G, Heuzey MC, Carreau PJ. Modeling fiber interactions in semiconcentrated fiber suspensions. Journal of Rheology 2009;53(1):49-72.

Folgar and Tucker 1984

Folgar F., Tucker C.L. Orientation Behavior of Fibers in Concentrated Suspensions. Journal of Reinforced Plastics and Composites, vol. 3 1984:98-119.

Gibson 1989

Gibson AG. Die entry flow of reinforced polymers. Composites 1989;20(1):57-64.

Hernandez et al 2004

Hernandez JP, Raush. T., Rios A, Strauss S, Osswald TA. Theoretical analysis of fiber motion and loads during flow. Polym. Compos. 2004;25(1).

Kamal and Sourour 1973

Kamal MR, Sourour S. Kinetics and thermal characterization of thermoset cure. Polym. Eng. Sci. 1973;13(1):59-64.

References

Loredo and Klöcker 1997

Loredo A, Klöcker H. Generalized inverse of the compliance tensor, and behaviour of incompressible anisotropic materials — Application to damage. Mechanics Research Communications 1997;24(4):371-6.

Mever et al. 2020

Meyer N, Schöttl L, Bretz L, Hrymak AN, Kärger L. Direct Bandle Simulation approach for the compression molding process of Sheet Molding Compoand. Composites Part A: Applied Science and Manufacturing 2020;132:105809.

Phelps et al. 2013

Phelps JH, Abd El-Rahman AI, Kunc V, Tucker CL. A model for fiber length attrition in injection-molded long-fiber composites. Composites Part A: Applied Science and Manufacturing 2013;51:11-21.

Pipes et al. 1991

Pipes RB, Hearle JWS, Beaussart AJ, Sastry AM, Okine RK. A Constitutive Relation for the Viscous Flow of an Oriented Fiber Assembly. Journal of Composite Materials 1991;25(9):1204-17.

Sommer et al. 2018

Sommer DE, Favaloro AJ, Pipes RB. Coupling anisotropic viscosity and fiber orientation in applications to squeeze flow. Journal of Rheology 2018;62(3):669-79.

Toll and Månson 1994

Toll S, Månson J-AE. Dynamics of a planar concentrated fiber suspension with non-hydrodynamic interaction. Journal of Rheology 1994;38(4):985-97.

Toll 1998

Toll S. Packing mechanics of fiber reinforcements. Polym. Eng. Sci. 1998;38(8):1337-50.

References

Wang et al. 2008

Wang J, O'Gara JF, Tucker CL. An objective model for slow orientation kinetics in concentrated fiber suspensions: Theory and rheological evidence. Journal of Rheology 2008;52(5):1179–200.

Wittemann et al. 2019

Wittemann F, Maertens R, Kärger L, Henning F. Injection molding simulation of short fiber reinforced thermosets with anisotropic and non-Newtonian flow behavior. Composites Part A: Applied Science and Manufacturing 2019;124:105476.

Wittemann et al. 2021

Wittemann F, Kärger L, Henning F. Theoretical approximation of hydrodynamic and fiber-fiber interaction forces for macroscopic simulations of polymer flow process with fiber orientation tensors. Composites Part C: Open Access 2021;132(53):100152.

Wittemann et al. 2022

Influence of fiber breakage on flow behavior in fiber length- and orientation-dependent injection molding simulations. Journal of Non-Newtonian Fluid Mechanics 2022;310:104950.

Thank you for your attention.

Karlsruhe Institute of Technology (KIT) FAST Institute of Vehicle System Technology LB Lightweight Design Division

Rintheimer-Querallee 2, 76131 Karlsruhe, Germany http://www.fast.kit.edu/ Leader: Prof. Dr.-Ing. Luise Kärger and Prof. Dr.-Ing. Frank Henning

Dr.-Ing. Florian Wittemann Groupleader mold filling simulation florian.wittemann@kit.edu Tel.: +49 721 608 45379

Thanks to STIFTUNG Deutsche Forschungsgemeinschaft Baden-Württemberg MINISTERIUM FÜR WISSENSCHAFT, FORSCHUNG UND KUNST Baden-Württemberg MINISTERIUM FÜR WIRTSCHAFT, ARBEIT UND WOHNUNGSBAU

for financing the projects, which enabled this research