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House of Competence

Interdisciplinary lightweight solution

Business to industries

• Virtual process chains 

and mapping

• Process simulation

• Structural simulation

• Optimization & AI

• Product development

• Method application

• Manufacturing assurance

• Engineering service 

provider

• Process development

• Plastics engineering   

• Quality management

• Part development

• Characterization

• Additive manufacturing

• Synthesis, formulation, 

modification

• Materials science

• CT scans 

• Hybrids

MaterialsMethods Processes
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Integrated virtual process Chain

Benefits of a continuous CAE chain:

Consideration of manufacturing effects and their influence on structural performance

Initial verification of manufacturing

Enabling iterative optimization over multiple simulation steps
→ Virtual design and process optimization
→ Accelerated design loops to reduce development time and resources

O P T I M I Z A T I O N

V I R T U A L P R O C E S S C H A I N

F L O W O F I N F O R M A T I O N

Molding Curing / coolingGeometry Forming Part

(Kärger et al. 2015)

(Görthofer et al. 2019)
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Injection molding process
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Material

Material is a suspension of matrix and 
fibers

Raising temperature or shear rate lowers 
the viscosity

Curing raises the viscosity

Fiber orientation
influences
flow field

Result: complex flow behavior

Eigenschaften Fließverhalten

Shear rate

V
is

c
o

s
it
y

T2 > T1

F
ib

e
rs

Flow field
influences
fiber orientation

Molding
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Process phases

1. Plastification
▪ Temperature

▪ Fiber length

2. Mold filling
▪ Temperature

▪ Voids

▪ fiber orientation and length

3. Holding pressure
▪ Voids

▪ Shrinkage

4. Curing
▪ Mechanical properties

▪ Warpage

5. Ejection
▪ Warpage

6. Cooling
▪ Mechanical properties

▪ Warpage

3. Holding 

pressure

1. Plastification

2. Mold filling

4. Curing

5. Ejection

6. Cooling

3. Holding 

pressure

2. Mold filling

4. Curing

5. Ejection

6. Cooling

2. Mold filling
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Mold filling simulation

Simulation model

Non-isothermal

Non-Newtonian

Isotropic

Results: p, T, FO

Boundary conditions for 
FRP

State of the art
Air as second phase

Volume-of-Fluid approach

Interpolation in partially filled 
cells

Additional boundary 
conditions

Multiphase approach
Interaction between matrix 
and fibers

Anisotropic viscosity

Hydrodynamic forces

Fiber breakage

Fiber-fiber-interaction

Contact forces at contact 
points

Material internal Aspects

29.06.2023

AirFRP
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Restrictions and Approximations

Approaches for macroscopic level

Fiber orientation tensors (Advani and Tucker 1987)

Homogenized material model

Use of standard models

Matrix viscosity (Castro and Macosko 1982)

Fiber orientation (Folgar and Tucker 1984, Wang et al. 2008)

Curing (Kamal and Sourour 1973)

Eigenvectors of the orientation tensors
represent reference fibers (Wittemann et al. 2021)

Three fibers per cell

Eigenvalue is orientation probability

Reference fibers are perpendicular

x1
x2

x3

𝑨 = න 𝒒⊗ 𝒒 𝜓(𝒒)d𝒒

x1
x2

x3

𝝂3

𝑨 : Fiber orientation tensor

𝒒 : Single fiber vector 

𝝂𝑛 : n-th eigenvector

𝝂1 𝝂2
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Anisotropic viscosity

Fibers full orientated (transverse isotropic)

Incompressible

Fiber geometries are identical

Variation of velocity for different direction 
viscosities

Calculation of 𝜂11, 𝜂12 and 𝜂23 based on 
microscopic model

Assumptions (Gibson 1989, Pipes et al. 1991) Model visualization (Pipes et al. 1991)

𝑑 : Fiber diameter

𝐿 : Fiber length

ℎ : Fiber distance

𝑈1 : Velocity in 𝑥1

𝜂11 : Strain viscosity

𝜂12 : Axial shear viscosity

𝜂23 : transverse

shear viscosity

𝑈1,2 > 𝑈1,1



Wittemann, Henning, Kärger – FPCM 15
Institute of Vehicle System Technology

Lightweight Design Division
14

Methods

29.06.2023

Anisotropic viscosity

Formulation of transverse isotropic fluidity 
tensor (Pipes et al. 1991)

Building a pseudo inverse viscosity tensors 
(Loredo and Klöcker 1997)

Orientation averaging (Advani and Tucker 1987)

Fourth order viscosity tensor as function of 
fiber orientation, length and 
volume fraction
(Sommer et al. 2018, Wittemann et al. 2019)

Scheme Final Formulation

𝔸 : Fourth order orientation 

tensor

𝑨 : Second order

orientation tensor

𝑰 : Unity tensor

𝜼IV :Viscosity tensor

𝜂11 : Strain viscosity

𝜂12 : Axial shear viscosity

𝜂23 : transverse

shear viscosity

𝜼IV = 𝜂11 − 4𝜂12 + 𝜂23 𝔸

+
𝜂11

3
+ 𝜂23 𝑨⊗ 𝑰 + 𝑰⊗ 𝑨

+ 𝜂12 − 𝜂23 𝑨⧠𝑰 + 𝑰⧠𝑨

+ 𝜂12 − 𝜂23 𝑨⧠𝑰 TR + 𝑰⧠𝑨 TR

+
𝜂11

9
− 𝜂23 𝑰 ⊗ 𝑰

+𝜂23 𝑰⧠𝑰 + 𝑰⧠𝑰 TR
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Hydrodynamic forces

Stokes Flow for drag force:

𝑭D
sphere

= 3𝜋𝜂M𝑑𝑼

Approximation for fibers (Meyer et al. 2020)

𝑭D
fiber = 3𝜋𝜂M𝑑𝑘D𝑼 mit 𝑘D = 𝑓 𝜙, 𝑟, 𝛼, 𝛽

Lift force similar (Meyer et al. 2020)

𝑭Li
fiber = 3𝜋𝜂M𝑑𝑘Li𝑼 mit 𝑘Li = 𝑓 𝜙, 𝑟, 𝛼

Force approximation Model illustration

𝑭D : Drag force

𝑭Li : Lift force

𝑼 : Velocity

𝜂𝑀 : Matrix viscosity

𝑑 : Fiber diameter

𝜙 : Angle btw. fiber and 𝑼
𝑟 : Fiber aspect ratio

𝛼, 𝛽 : Fitting factors

𝑼

𝑼
𝜙

𝑭D
sphere
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Hydrodynamic forces

Fibers move with the velocity of the cell

Calculation of relative velocity with 
neighbor cells
→ Number depends on fiber length

3 eigenvectors = 3 reference fibers
→Individual angle for every eigenvector
→Individual forces for every eigenvector

Application on macro scale (Wittemann et al. 2021) Model illustration

Eigenvector

Relative velocity

Hydrodynamic

forces
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Fiber breakage

Buckling is breakage mechanism
(Hernandez et al. 2004, Durin et al. 2013, Phelps et al. 2013)

Breaking point and equation by Phelps 
(Phelps et al. 2013)

𝜕𝑁𝑛
f

𝜕𝑡
= −𝑃𝑛

br𝑁𝑛
f +

𝑚

𝑅𝑛𝑚
br 𝑁𝑚

f

Force calculation with hydrodynamic 
forces (Wittemann et al. 2022)

Orientation dependent forces and 
reduction of model parameters

Model Breaking by buckling

B
re

a
k
a

g
e

-

p
ro

b
a

b
ili

ty

Fiber length coordinate

𝑁𝑛
f : Number of fibers with

length 𝐿𝑛
𝑃𝑛
br: Breakage probability

of fibers with length 𝐿𝑛

𝑅𝑛𝑚
br : Probability of creating fibers 

fibers with length 𝐿𝑛 by fibers of 

length 𝐿𝑚

(Phelps et al. 2013)
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Fiber-fiber contact points

Contact points according to Toll (Toll 1998)

Invariants 𝑓 and 𝑔 need single fiber 
orientations

Eigenvectors as reference fibers
(Wittemann et al. 2021)

Polynomial approach as function of 
eigenvalues (Wittemann et al. 2021)

Theory Equations

𝑁fc = ൗ8 𝜋𝛷𝑟𝑓 + 4𝛷 𝑔 + 1

𝑓 = නන 𝒒𝑛 × 𝒒𝑚 𝜓(𝒒𝑛)𝜓(𝒒𝑚)d𝒒𝑛d𝒒𝑚

𝑔 = නන 𝒒𝑛 ∙ 𝒒𝑚 𝜓(𝒒𝑛)𝜓(𝒒𝑚)d𝒒𝑛d𝒒𝑚

𝑓 = 

𝑛,𝑚=1

3

𝝂𝑛 × 𝝂𝑚 𝜆𝑛𝜆𝑚 = 2𝜆1𝜆2 + 2𝜆1𝜆3 + 2𝜆2𝜆3

𝑔 = 

𝑛,𝑚=1

3

𝝂𝑛 ∙ 𝝂𝑚 𝜆𝑛𝜆𝑚 = 𝜆1𝜆1 +𝜆2 𝜆2 +𝜆3 𝜆3

𝑓, 𝑔 = 

𝑛,𝑚=1

3

𝑀𝑛𝑚
ሚ𝜆𝑛 ሚ𝜆𝑚

𝑁fc : Contact points

𝑓, 𝑔 : Invariants

𝛷 : Fiber volume fraction

𝒒 : Single fiber vector

𝝂 : Eigenvector

𝜆 : Eigenvalue

𝑀 : Coefficient matrix

18
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Contact forces

Before and after fiber contact

Proportional to matrix viscosity, relative 
velocity, fiber distance and overlap

Approximation of overlap by average fiber 
angle
(Wittemann et al. 2021)

𝑭L =
𝑘S𝜂M𝑼ff

𝒉
𝐴ff =

𝑘S𝜂M𝑼ff

𝒉

𝑑2

sin(𝜔)

Lubrication force Model

A𝜔

A

𝑑

𝑭L : Lubrication force

𝑼ff : Relative velocity

𝐴ff : Overlap

𝒉 : Fiber-fiber distance

𝑑 : Fiber diameter

𝜔 : Fiber angle

𝑘S : Lubrication coefficient

𝜂M : Matrix viscosity

19
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Numerical verification

Forces and contact points are verified by 
reference cases, built up with 500 
individual fibers

22 different orientation states are 
considered

Orientation tensors are directly calculated 
with the single fiber orientations

Single fibers as reference case Examples
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Hydrodynamic forces

Comparison of averaged force on single 
fibers (f) and eigenvectors (EV)

𝑼 = ൗ1 3
1 1 1 m/s

Fit perfectly (Wittemann et al. 2021)

Force values contribute to the relation of 
orientation and velocity

Summary Results – comparison to single fibers
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Fiber breakage model

Fibers under simple shear
→ reorientation due to shearing

Number of buckling fibers decreases due 
to orientation

Constant breakage probability for SoA

Decreasing breakage probability of novel 
approach due to buckling amount and 
force calculation

Summary Results – comparison to SoA

0 2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6
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1.0

V
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e
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(Wittemann et al. 2022)
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Fiber-fiber contact points

Results for aspect ratio 100

Eigenvector approach fitted with factor 
Τ3𝜋 8 (Férec et al. 2009,  Wittemann et al. 2021)

Eigenvector approach predicts too low

Polynomial approach creates best results

Summary Comparison to single fibers

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70

C
o
n
ta

c
t 
p
o
in

ts

Orientation state

 Single fibers

 Eigenvectors

 Polynomial

24



Wittemann, Henning, Kärger – FPCM 15
Institute of Vehicle System Technology

Lightweight Design Division
25

Results and Validation

6/29/2023

Fiber-fiber overlap

Results for aspect ratio10

Individual overlap and averaging for single 
fibers

Average angle approximated with
𝜔 = 4/𝜋 𝑓 (Wittemann et al. 2021)

Average overlap with average angle

Polynomial approach creates best results

Summary Comparison to single fibers
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Experimental validation

Material
55 %-weight glass fiber filled phenolic

Modeling non-Newtonian, anisotropic

Process
Filling rate 150 cm³/s

Tool temperature 185 °C

Recorded data
Two pressure sensors in mold (𝑝1 and 𝑝2)

Fiber length measured at 𝐿f

Experiments by Maertens (Maertens et al. 2021)

Material and Process parameters Model 
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Experimental validation

Fiber length distribution 1 – 5 mm Fiber length distribution 5 – 12 mm
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(Wittemann et al. 2022)
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Experimental validation

Good results for fiber length distribution

Good prognostication of pressure at 𝑝1

Simulated pressure too high at 𝑝2

Fiber breakage influences pressure results
→ fiber length is parameter of the 
anisotropic viscosity tensor

Summary In-mold pressure
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(Wittemann et al. 2022)
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Summary

Novel simulation approaches for more 
detailed mold filling simulations

Anisotropic viscosity tensor

Calculation of hydrodynamic forces and fiber 
breakage

Calculation of fiber-fiber contact points and 
forces

Application on macroscopic scale

Good agreement of simulation results and 
experimental data
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Next steps

Wall slip

Better formulation for temperature boundary 
conditions

Usage of information about fiber-fiber 
contact points, forces and length distribution

Probabilistic approaches to model process 
uncertainties
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