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ABSTRACT

Predictions for the effective viscosities of a hyper-anisotropic medium consisting of collimated,
[ discontinuous fibers suspended in a viscous matrix developed earlier by the authors [1-3] have
been extended to capture the characteristics of typical polymers including non-Newtonian behavior
and temperature dependence. In addition, the influence of fiber misorientation has also been

modeled by compliance averaging to determine ensemble properties for a given orientation

distribution.




i, Anisotropic Viscosities of an Oriented Fiber Assembly with Temperature
and Strain Rate Dependence
Introduction
In several earlier papers [1-3] the authors developed models which predict the primary viscosities
of an anisotropic incompressible material consisting of collimated, long discontinuous fibers
suspended in a fluid matrix. A state of transverse isotropic symmetry was assumed for the
medium. These models were developed by assuming the kinematics of adjacent rigid fibers and
determining the resulting behavior of the matrix fluid. This procedure allows for the prediction of
the effective properties of the medium including longitudinal elongational, in-plane shearing,
transverse elongational and transverse shearing viscosities. Explicit expressions have been
developed for each of the effective viscosities for a Newtonian matrix fluid. Table 1 shows a

summary of these results in terms of fiber volume fraction, f, fiber aspect ratio, L/D, and matrix

viscosity, M.

A deficiency of the simple power-law constitutive relation for a shear thinning fluid is its lack of a
finite zero-shear viscosity. In a recent paper [4] the authors introduced a constitutive relation
which exhibits a finite zero-shear rate viscosity and includes a temperature dependence into the

relations for the effective material properties. This development will be summarized in the

following.

1.1 Development
The effective viscosities shown in Table 1 fail to capture all the characteristics exhibited by polymer
melts such as dependence on shear rate and temperature. Carreau [5,6] has introduced the

following empirical rheological model to describe the non-Newtonian behavior of such a fluid.
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The onset of the nonlinearity is determined by the time constant, A. It is clear from equation (1)
that for ()—» ¥)<<1 the viscosity becomes Newtonian. The power law exponent, n, determines the
degree of nonlinearity. The value of n=1 corresponds to a Newtonian fluid, and as the exponent

decreases the fluid exhibits increased shear thinning.

It has been stated [7] that the influence of temperature on viscosity can be represented as follows:
Tlo=MoAr; A= AA7 )

where the temperature shift factor, At , is defined as:

Ar= e-§(T/T o—1) (2a)

Note, the temperature shift factor as defined above is normalized so that at a given reference

temperature, T, the shift factor equals unity.

Viscosity versus shear rate data for typical high performance polymer PEEK at 399°C [8] is shown
in Figure 1. Figure 2 shows the temperature shift factor versus temperature for PEEK [8].
Equation (1) and equation (2a) were fit to the PEEK data thus determining the parameters as

follows:

To= 280 Pa-S, A= 0.038 S, n = 0.787, £ = 6.56

Equations (1) and (2a) are compared with the experimental data in Figures 1 and 2.

Employing this matrix constitutive relation and the development presented in reference [3] it is

possible to derive new expressions for effective viscosities of the medium as follows:
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1.2 Results

Given the material descriptors and matrix properties as a function of temperature and strain rate,
equations (3a-d) can be utilized to predict the unique properties of the material. Figure 3 shows
these predictions for the PEEK data discussed in section 2 in conjunction with a square array of 60
percent fiber volume content and a fiber aspect ratio of 10°. The figure illustrates the relative
difference in the various effective viscosities. It is especially interesting that the maximum
Newtonian strain rate is lower for the fiber filled polymer than for the neat polymer. This is
especially evident in the longitudinal elongational viscosity which begins to exhibit the shear
thinning phenomenon at an elongational strain rate approximately three magnitudes of order less

than the fluid's maximum Newtonian strain rate.

Figure 4 shows the effect of temperature on the in-plane viscosity versus strain rate. Notice that an
increase in temperature decreases the viscosity but increases the maximum range in rate over which

Newtonian behavior is observed.

To gain a better understanding of the strain rate and temperature dependence a parametric study of

the Carreau model parameters will be presented. Only the longitudinal elongational viscosity will

be illustrated since the same general tendencies will hold for all the viscosities in equation (3). For




large strain rate, it is clear that the quantity (n-1) defines the slope of the viscosity versus strain rate
curve on a log-log scale. This is illustrated in Figure 5 for values of the power law term in the
range 0-1. Note that n=1 corresponds to the Newtonian case. Using a log-log bi-linear

approximation for the viscosity strain rate relation, an upper bound for the maximum Newtonian

strain rate is
. 2u
= @
N ArI—)LD

Equation (4) shows that as the time constant increases, &y decreases. This effect of the time
constant on € is illustrated in Figure 6. The influence of the fiber geometry on viscosity can also
be observed by studying equation (4). Increases in L/D will result in a decrease in the maximum
Newtonian Strain rate for the fiber assembly. The temperature dependency on the viscosity
appears in the zero-shear viscosity and time constant. As the temperature shift factor increases, the
zero-shear viscosity and the time constant decrease. This is illustrated in Figure 7 for various

values of the temperature shift factor.

2. Influence of Fiber Orientation on the Viscosities of Anisotropic Materials

The relationships for the material properties as presented above are valid for a system of perfectly
aligned fibers which coincides with the reference axes. Many times the fibers are off axis to the
loads and hence the reference axis. In this case the effective properties are of interest. Also due to
manufacturing and processing, the fibers are not perfectly aligned. The effective viscosities for

these two conditions will be studied in the following.

The effective viscosities for a medium consisting of collimated, long discontinuous fibers
suspended in a viscous matrix were examined in the last section. These results have shown that
the effective viscosities for such a system are highly anisotropic with anisotropy ratios which often

exceed 108 for fiber aspect ratios of 103 - 10%. Given the extreme sensitivity to material anisotropy

of material properties transformed outside the principal material coordinate system, it is clear that




fiber orientation will have a great influence upon effective material properties. Two conditions of
fiber orientation must be considered. First, the condition where fibers are perfectly collimated but
do not coincide with the load direction and second, the condition where individual fibers are
misoriented with respect to the principal material direction. In the latter case, misorientation of
individual fibers might have occurred during the manufacturing step, while in the former case the .
inability to insure that the test directions and material principal directions coincide could lead to

measurement of properties which could differ greatly from actual values.

2.1 Transformed Properties

For orthotropic viscous materials in plane stress with the principal material designated "1", the

principal viscosities are:

N, : longitudinal elongational viscosity
T,y : transverse elongational viscosity

M2 : inplane shearing viscosity

The apparent or transformed properties at any angle, 6 may be expressed in terms of the principal

viscosities and the angle, 6.

N10)my; = [m*+ Myy/myp-Dm?n® + (1111“122)"4]_1 &)
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where m = cos 0 and n = sin 6.

Results for 0y, My3 , and M, are shown in Figures 8-10 where estimates for n;; , M55 , and N;,

are taken from reference [1]1 as shown in Table 2. Estimates for the viscosities could also be

obtained from the relations given in equations 3a-3c. The dependence of the principal elongational

viscosity upon fiber aspect ratio (L/D) is apparent in Figure 8. For systems with L/D=10* the ratio




of transformed elongational viscosity to principal elongational viscosity, 1/,/N; is 102 at 6=1°.
Hence, fiber aspect ratios which correspond to actual material systems such as that discussed in

reference [9] yield highly anisotropic materials systems whose properties exhibit extreme

sensitivity to fiber orientation. A similar result for T,5/M,, is shown in Figure 9 for L/D=10%
For the apparent inplane shearing viscosity Mm,,/MN;, , the maximum occurs at
8 =n/4 with a value of approximately 10! as shown in Figure 10. Itis interesting to note that while

both the elongational viscosities varied over 10° to 10° for the range in orientation angle of 0 to

/2, the inplane shearing viscosity ratio only varied over 10° to 10! for L/D=10%.

2.2 Ensemble Properties

Should the material system consist of an ensemble of elements (fibers) with varying orientation,
the expected value of the viscosities for the ensemble will be different from the values obtained
from equations 5-7. In fact, even with small misalignments the effective viscosities may be
drastically different. The effective viscosities will be bouﬂdcd b;' average values as determined by
assuming constant stress or constant strain. In the following, only the expected values based on
constant stress will be presented. This will illustrate the large changes in effective viscosity due to

small misorientations.

To determine the expected values of the viscosities, a distribution function, ¢(6), representing the
fiber orientation is determined and a weighted average of the compliance matrix is calculated as

shown below.
T2 -1
Mp={| Bi(O)0(0)d6 @®)
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where the compliance terms, B{j(e), are defined as follows:

By =miMy+ (=l +1myp) mn? + n*m,, %)

By =n*My+ (~1my+1n ) m2n? + mémy, (10)




Bes =m*Mig+ (8M;+4Mp—-2My5) m*n + n*my, (11)

If the fibers are assumed to be uniformly distributed between £6, , the normalized probability

density function is

¢=0,0>6,and 6 <6,

(12)
¢= 1/291 ,—91 Se_<.91

Combining equations (8) through (12) yields the expected value of the viscosities utilizing the

compliance matrix:

MMy = 3291‘1227112/[(211227112+3ﬂ117112+1'1117122) 46,

+ (M12M2z—N11M12) 88in28; + (259N 12411112~ M22) 5ind6, ] (13)

MaMap = 32917111ﬂ12/[(2ﬁ227112+371117112+111iﬂ22) 40,

+ (M1Miz=N2zM12) 85in28; + (2NN 121117 12-M1 1 M22) §ind6, ] (14)

M12M12 = 861M M2/ [ My Mozt 2N 1M M 2) 46,
+ (M1 M22=2M12M 22N M) sind6, | (15)

Consider the expected value of the principal elongational viscosity (n;;) for a fiber ensemble with
equal probability of fiber orientation between £8; . The expected viscosity for a range of values of
0, are shown in Figure 11. These results indicate that the compliance method mirrors the
significant sensitivity to orientation shown for 1} in Figure 8. Therefore for small misalignment

of the fibers the apparent viscosity is greatly reduced.

For the expected value of the transverse elongational viscosity {n;;) of the ensemble, there is little

dependence on the misorientation as shown in Figure 12. Similar results for the expected value of

the shearing viscosity {n,,) are shown in Figure 13.




3.0 Conclusions

Relations for predicting the effective viscosities of an aligned discontinuous fiber filled fluid
developed in [1-3] for Newtonian and power law fluids have been extended to include zero-shear
viscosity and temperature dependence. This was accomplished by describing the matrix fluid
viscosity with a Carreau model. Using experimentally determined viscosity data for PEEK,
effective properties of a fiber assembly were predicted. It was shown that the introduction of
fibers into the fluid can dramatically decrease the maximum Newtonian strain rate. This is critical
when determining a maximum strain rate for which Newtonian behavior is expected. The effect of
the Carreau model parameters on the elongational viscosity were demonstrated for a wide range of

values.

In addition to long discontinuous fiber systems, the relationships presented in this paper, all but the
longitudinal elongational viscosity prediction, are valid for continuous fiber systems. It should be
kept in mind that these relations provide insight into the relative magnitudes of the predicted

properties, the effect of material descriptors, and the degree of anisotropy of the medium.

The influence of fiber orientation upon the effective viscosities of a medium consisting of
discontinuous fibers suspended in a viscous medium have been determined for the conditions of
perfect collimation and off-axis orientation, as well as ensemble misorientadon. In the former case
extreme sensitivity to fiber orientation was exhibited by all the viscosity terms corresponding to
materials with aspect ratios of 10° - 10*. Reduction in the ratio of apparent elongational viscosity

to principal elongational viscosity of 107 for an orientation of 1° was observed.

The compliance matrix was utilized to predict the expected values for the anisotropic viscosities of
the medium consisting of an ensemble of misoriented fibers in a viscous medium. This averaging

approach yielded results for the expected values of viscosities which display the same tendencies as

the properties for the off axis perfect collimation results. It was shown that small misalignments in




the fibers could greatly decrease the longitudinal elongational viscosities without corresponding

effects on the transverse elongational and inplane shearing viscosities.
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Table 1

Anisotropic Viscosity Predictions [3]

Term Newtonian Fluid
fil-
Nu/M _Z_I:—u] @L/D)?
n
; 1] 1+pn
N2/M ‘[—]
1 )
1
N2/ =
n
4
M2o/M »
T

p=1 -
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Table 2

Plane Stress Orthotropic Viscosities

Micromechanics Predictions [3]
Volume fraction : 0.6 n,,/m =2.08 (L/D)?
Packing geometry : square array NoM =447
My =31.8
!
b
|
|
)
'
!
13
¢




Nomenclature

Symbol Term Units [F,L,T,D]

At Temperature shift factor --

D Fiber diameter L

f Fiber volume fraction --

F Maximum fiber volume fraction --

L Fiber length L

n Power law exponent --

T Temperature D

Ty Reference temperature D

&N Maximum Newtonian strain rate T

n Fluid viscosity FT/L?

Mo Zero-shear viscosity FT/L? '

M1 Longitudinal elongational viscosity FT/L?

No2 Transverse elongational viscosity FT/L®

N2 In-plane shearing viscosity ~ FTA?

N23 Transverse shearing viscosity FT/L?

A Time constant T

13 Temperature shift factor constant --

m cos 6 --

n sin @ | -

ﬁij Terms of the compliance matrix (Pa-Sec)'l .

0 Orientation angle degree

n Matrix viscosity Pa-Sec

M Apparent elongational viscosity Pa-Sec

N> Apparent transverse elongational viscosity Pa-Sec )

N2 Apparent inplane shearing viscosity Pa-Sec |

(nij) Expected value of 1y;; Pa-Sec

) Probability density function - \
'
¢

14




Figure Captions

Figure Caption
1 Experimental Data for Viscosity Versus Shear Rate for PEEK at 399°C
2 Experimental Data for Temperature Shift Factor Versus Temperature for PEEK
3 Effective Viscosities Versus Strain Rate for Fiber Reinforced PEEK at 399°C
4 Effect of Temperature on Inplane Shearing Viscosity Versus Strain Rate for Fiber-
Reinforced PEEK
5 Effect of Power Law Exponent on Longitudinal Elongational Viscosity Versus
Strain Rate
6 Effect of Time Constant on Longitudinal Elongational Viscosity Versus Strain Rate
7 Effect of Temperature on Longitudinal Elongational Viscosity Versus Strain Rate
8 Influence of Fiber Orientation on Longitudinal Elongational Viscosity
9 Influence of Fiber Orientation on Transverse Elongational Viscosity
10 Influence of Fiber Orientation on Inplane Shearing Viscosity
11 Expected Value for Longitudinal Elongational Viscosity
12 Expected Value for Transverse Elongational Viscosity
13 Expected Value for Inplane Shearing Viscosity
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