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Abstract

A numerical solution technique is developed for problems of forming
of highly-anisotropic composite laminates . The material is assumed to
behave as a transversely isotropic Newtonian fluid, subject to the twin
kinematic constraints of inextensibility in the fiber direction and material
incompressibility. Assumption of plane stress conditions for thin laminae
results in a simplified constitutive law, involving a single arbitrary tension
stress in the reinforcement direction. The weak forms of the constraint
and governing equations for creeping flow are discretized using independent
interpolation of the velocity and tension stress fields. The resulting mixed
system is seen to be directly analogous to the primitive variable formulation
of Stokes flow. A mixed penalty finite element approach is used to solve for
each step in an Updated Lagrangian solution scheme. Computations are
carried out using a biquadratic velocity / bilinear discontinuous tension
stress element. Solutions of flat sheet problems are presented, involving
fiber orientation and element thickness updating after each time step.

1 Introduction

High performance thermoplastic composites have attracted considerable attention
in recent years, not only for their improved mechanical and physical properties|[1],
but also because their chemistry makes rapid automated production of composite
structures a possibility. Sheet-forming techniques currently in use with these
materials include rubber pad forming, matched-metal die forming, hydroforming,
vacuum forming and diaphragm forming[2][3][4] [5].

Sheet-forming of structural shapes from thermoplastic composites can only
be viable if the results are predictable and repeatable. Numerical analysis of
sheet-metal forming processes is now an essential tool for component designers,
and it is likely to assume the same importance in composite processing. The aim
of the current research is to develop a simulation technique which will enable the
composite part designer to assess the formability of given geometries and predict
finished part thickness and fiber orientation.

In composite sheet-forming, continuous[6] or aligned-discontinuous [2] fiber
reinforced sheets are deformed at temperatures above the melt temperature of
the polymeric matrices. The dominant characteristic of these materials is the
high stiffness of the carbon fibers in comparison to that of the viscous matrix.
Flow processes that occur at the polymer melt temperature are therefore highly-
anisotropic, with deformations being accomodated by shearing and transverse
elongational mechanisms(6] [7][8]. Methods of measuring the melt temperature
viscosities of thermoplastic composites are currently being developed|[9]{10][11]
which will provide the necessary constitutive data for numerical analysis.

Most of the predictive models being proposed for sheet forming of advanced
thermoplastic composites have been purely kinematic[12]{13][14]. Though useful
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for predicting fiber orientation fields, these approaches do not provide the stresses
and deformations at each step which would be needed to predict problems such
as incomplete forming, buckling and wrinkling. Individual forming mechanisms,
such as squeeze-flow[12] and interlaminar bending[15]{16] have been modeled,
but none of these approaches provide a basis for dealing with the forming of a
complex structure. A full continuum mechanics formulation of the problem is
needed in order to model the effect of parameters such as tool design, laminate
shape, forming rate and ply stacking sequence on the stresses developed during
forming.

An idealized theory for highly anisotropic materials has been developed [17],
which treats such materials as completely inextensible in the fiber direction. This
condition provides a kinematic constraint on the system, leading to simplified so-
lutions of otherwise difficult problems. This approach has recently been extended
to highly anisotropic viscous fluids 18]. and has been used to obtain approximate
solutions for processing problems with thermoplastic composites(19]{20]. Analyt-
ical solution of these simplified flow equations for realistic forming situations can
be quite difficult, even for regular shapes[21]. A numerical approach is necessary
in order to deal with the geometric complexities commonly encountered in form-
ing situations. Finite-difference schemes have been proposed for simple forming
situations[22] but, as the finite element approach is is the most commonly used
for complex-geometry problems, it is the chosen method in this work.

The numerical formulation presented here is a mixed penalty finite element
system, which is analogous to a formulation developed by the authors for elastic
problems in an earlier paperi23]. The penalty method is a popular technique
for solution of mixed systems of equations, not only in finite element problems,
but also in applied mathematics problems arising from constrained variational
principles or the use of lagrangian multipliers [24]. The penalty method was first
used in conjunction with the finite element method for solution of plate and shell
problems of structural mechanics and is now an accepted technique for solution
of incompressible solid and fluid mechanics problems[25][26].

2 Theoretical

2.1 Kinematics

The concept of the Ideal Fiber Reinforced Material was introduced by Spencer [17]
for treatment of highly anisotropic elastic and plastic materials. Such a material
is assumed to behave in an idealized fashion, obeying the twin constraints of inex-
tensibility in the fiber direction and material incompressibility. These kinematic
constraints restrict the range of possible deformations of the material, and are
given by Rogers [18] for a fluid as:




Incompressibility

d,',' =0 (1)

Inextensibility in Fiber Direction

aiajd,]- = [{] (2)

where a is a unit vector representing the local fiber direction and d is the Eulerian
rate-of-strain tensor:
1 Bvi ij

i ) (3)

where v is the velocity vector, and z; are the components of the Cartesian axes.
In general, the local fiber orientation vector is a function of both space and time.

d,‘j =

a = a(x,t) (4)

Assuming that the fiber directions rotate as material lines during deformation,
Rogers [18] gives the following expression for rotation of the local fiber orientation
vector:

Fiber Rotation

: ov,
a; = Qg Bmk (5)

where the superimposed dot denotes differentiation with respect to time, following
a material particle, or the total time derivative.

2.2 Constitutive Theory for Newtonian Fluid

The constitutive relations for an ideal fiber-reinforced Newtonian fluid have been
developed by Rogers [18]. The material is assumed to behave as a transversely
isotropic linear viscous fluid, with a single family of reinforcement. Furthermore,
the fibers are assumed to lie in a plane and be continuously distributed through-
out, acting only as strong or preferred directions. If the fluid is incompressible
and inextensible in the fiber direction, we may write the constitutive equation in
indicial notation as follows:

0ij = =pbi; + Ta.a; + 2urd,, + 2(puy, — pr)(a.andy; + ajardy,) (6)
where 6;; is the Kronecker delta, bij=1,0=7;6;,=0,1%# 7, and

o is the stress tensor.

pr 1s the longitudinal shear viscosity.

At is the transverse shear viscosity.

p Is an arbitrary hydrostatic pressure.

T is an arbitrary tension in the fiber direction.
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The constraint equations have caused two arbitrary stress terms to appear in

the constitutive equation (6). Physically, these terms are an arbitrary hydrostatic
pressure (p) and an arbitrary tension stress in the fiber direction (T).
If we assume the fibers to be initially straight and parallel in a Cartesian co-
ordinate system with axes z,,z5,z3, and to lie in the 1-2 plane at an initial angle,
6 to the z;-axis, then the components of the local fiber orientation unit vector at
any time instant, ¢ become:

a = (cos6(t),sinf(t),0) (7)

then, if we let m = cos 6(¢) and n = sin 6(t), equation (6) may be written:

[ J11 ] I D11 0 0 0 0 D16 T du 7 [ Tm2 =P ]
T29 0 D22 0 0 0 Dzs dzg TTL2 7]
J33 _ 0 0 D33 0 0 0 d33 n -Pp (8)
023 0 0 0 D44 D45 0 2d23 0
o3 0 0 0 D4 Dsz O 2d3; 0
L 012 | L D]_G Dze 0 0 0 DGG 1L 2d12 ] L mnT

where, for convenience, the tensorial shear strain rates are replaced by the engi-
neering shear strain rates, (2d,3,2d3;, 2d;12). The terms of the viscous constitutive
matrix are given as follows:

Dy = 2pr(l - 2m?) + dppm?

Dy = 2pr(l— 2n2) + dppn?

D3z = 2#T

Dy = pr(l—n?)+ ppn’

Dss = pr(l - m?) + prm?

Des = pur

Dy = (ur — pr)mn

Dis = D3z = 2(pur — pr)mn (9)

The incompressibility constraint, equation (1) may be written in Cartesian coor-

dinates as follows: 5 p P
v1 (%) (%]
- . o 4T == U 10
8.’131 61132 8503 ( )
Similarly, the inextensibility condition, equation (2) may also be written in Carte-

sian coordinates:

dv,  Ov, Ovsy

cos? G(t)—a—v-l + cos 8(t)sin 6(t)(
6(51

+ —=) + sin? G(t)aT =0 (11)

6332 (9$1




2.3 Plane Stress in 1-2 Plane

Typical composite laminates used in the sheet-forming process are much thinner
in the direction perpendicular to the plane of the fibers than in the planar di-
rections. A reasonable assumption to employ would therefore be the existence of
plane stress conditions in the 1-2 plane.

033 = 013 =023 =10 (12)

Applying these conditions to the constitutive equations (8) and incorporating the
incompressibility equation (10) leads to the following expression for hydrostatic
pressure:

p = Di3dss = —Das(dyy + daz) (13)

The constitutive equation set for the ideal fluid under plane stress in the 1-2
plane is found from (13) and (8) as:

011 D11+ D33 D33 D1s di1 Tm?
O22 | = D3 Djyy ~ D3z Do dya | +| Tn? (14)
012 Dis Dy Degs 2d,, mnT

Notice that the arbitrary pressure term does not appear in this set of equa-
tions, but that the arbitrary tension in the fiber direction does. The incom-
pressibility equation has been directly satisfied using (13). The inextensibility
and fiber rotation equations (11} and (5) must still be satisfied and remain un-
changed. Though the stress in the 3-direction has been set to zero, the strain
rate has not, and may be found, after solution for the velocity field, by using (1).

2.4 Updated Lagrangian Scheme

The following assumptions are employed in order to obtain a numerical solution
for composite sheet-forming problems:

1. Acceleration effects are neglected. This is a reasonable assumption as most
sheet-forming processes are carried out over a period of minutes rather than
seconds.

2. Variables are referred to a material set of coordinates (denoted X, X, X3),
where the coordinate frame follows the material points during deformation.

3. The time domain is divided into a number of increments, in each of which
steady-state conditions exist.

4. The deformation during each time step is assumed to be small.




The problem is divided into a series of independent problem in a quasi steady-
state fashion. Following the solution for a single time step, the configuration and
properties of the body are updated and used as input for the next time step. This
approach is known as the Updated Lagrangian Scheme [27].

For an isolated volume of fluid at an instant in time, the equilibrium and
boundary traction equations are given as:

Tij.5 + bl =01in § (15)

tJ' = N,0;; Ol Ft (16)
where ) is the problem domain, I'; is the boundary on which the tractions t are
prescribed, and n; are the components of the unit normal vector to the boundary.
b; are the components of the constant body forces, such as gravity.
In the Lagrangian description, the finite deformation rate tensor, d has both
first-order and second-order terms [28]:
1, Ov, ov; Ove Ov
Sy 2y Do a7)
2°0X; 0X, 0X,04X,
The assumption that the deformations are small, (dv,/0X; < 1) leads to the
infinitesmal deformation rate tensor:
dij = i(% 9 81}])
2 (9:13]' 6513,
where the lower case letters z,,z,, 23 are used to denote the small-deformation
formulation.
The fiber rotation equation (5) is expanded for Lagrangian coordinates as:
8011' @vl
=
6t . 61X’k
During each time increment the steady-state assumption therefore precludes any
change in fiber orientation. However, the orientation is updated after each time
step (At), as follows:

dij =

(18)

(19)

Ov,
k )n
sz
Thus, for quasi-steady state conditions, the appropriate equation to update the

fiber orientation field angle, 6(z,, z;), for a time increment, (At), can be written
in Cartesan coordinates as:

for time step n: (ai)nt1 = (@)n + (Aa))n = (a:)n + (At)n(a (20)

(91’2 (9”(}
8(x1, Ta)np1 = O(T1,22)n + (At)n{axl + tan 9(3171’2)8_:;%
In a similar fashion, the updated body configuration can be found after each time
step from the velocity field:

(21)

(ml7 Iz, $3>n+1 — (Ila zz, 333)71 + <At)n(vluv27v3)n (22>

The solution procedure may be summarized as follows:




+ Step 1 The boundary value problem described by equations (18), (15), (16),
and (14) is solved for each time step (At),. Solution variables include
velocity, stress and strain rate fields.

¢ Step 2 The body configuration is updated from the velocity field using
equation (22).

o Step 3 The fiber orientation field is updated using equation (21). The terms
of the constitutive matrix (9) are then updated to ake account of changed
fiber orientation.

e Step 4 The boundary value problem for the next time step (At)py1 is solved
on the updated configuration.

3 Finite Element Formulation

3.1 Weak Formulation

The weak form of the equilibrium equations is found by introducing an arbitrary
velocity vector, §v, and summing the work done on the body. The equilibrium
equations (15) are premultiplied by the components of the arbitrary velocity
vector (for plane stress in the 1-2 plane) and integrated over the problem domain,
() as follows:

/n {5v1(3”” Oa1z Oo , Ooz +b) Q=0  (23)

s raaD 6
0z, * Oz, +b1) + Su zq Ozs
Integrating by parts and employing Green’s Theorem leads to the virtual work
equation:

I - 7 . T'Z _
/056 dQ) /n5v bd(2 /Fav £dl = 0 (24)

where the six stress components o, and the six components of the virtual strain
rate vector, 6¢ have been arranged in column matrices. The virtual strain rate is
defined as:

b€ = Sév (25)

where S is the plane stress derivative operator matrix.
The constitutive equation (8 is first re-written as follows:

o =Dé+aT (26)

T

where a’ is given as

al = | cos?d sin’f cosfsinf (27)




and then substituted into the virtual work equation (24):
/ 8T Dedf + / §TaTdq) — / 5vTbdQ) — / svTEdl = 0 (28)
o a 0 r

Equation (28) above represents the weak form of the equilibrium equations,
incorporating the constitutive equations. The remaining equation is the inexten-
sibility constraint in the fiber direction.

In developing the weak form of the inextensibility condition, equation (11),
notice that the equation may be recast in matrix form as:

a’Sv =0 (29)

Introducing an arbitrary weighting function, (6T')T, premultiplying equation (29)
and integrating for fiber inextensibility over the entire domain, results in

‘/Q((ST)TaTSVdQ =4 ) (30)

3.2 Discretization

The governing integral equations of the problem (28) and (30) are to be discretized
at nodes distributed throughout the domain, by the use of suitable interpolation
functions. In this case the solution parameters at each node are the velocity
vector v and the scalar tension stress in the fiber direction. The velocity and
tension fields will be discretized independently, employing two sets of interpola-
tion functions as follows:

vav=Na";T~T =Nt (31)

where N¥ and N* are the velocity and tension interpolation functions, and a’
and a' are the listings of nodal velocities and tensions. Applying the above
interpolations to the virtual velocity and strain rate terms of equation (28):

§v = N"6a’ and 6¢ = SNY§a” = BU6a" (32)
Inserting these relationships into the virtual work equation (28), we find:
(5a")T{/ﬂ(B”)TDB”a"dQ + /Q(B“)TaN‘a‘dQ
- /Q(Nv)deQ = /F(N”)del“} -0 (33)

The weak form of the inextensibility equation is found by substituting (31)
and (32) into equation (30):

(6a%)7 /Q(N‘)TaTB”a”dQ -0 (34)
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Noting that the identities in equations (33), and (34) must be true for all varia-
tions of the arbitrary parameters §a® and éat, the complete equation system may
be summarized as follows:

[<K15>T %tHj]*m:O =)

For any two nodes i and j, the matrix components are given by:
Ko /ﬂ (BY)TDBYdQ
K, = /;)(Bf)TaN;dQ
and f=— /ﬂ (N*)Tbod2 — /r (NY)TEdT (36)

where the system unknowns a” and at represent the nodal velocities and tensions.
This plane stress system will be known as the v-T formulation. We note that
whereas the first derivative of the velocity shape functions BY is involved, no
derivative of the tension stress functions N appears, and they may therefore be
discontinuous between elements.

A direct analogy ezists between the primitive variable formulation for an isotropic
incompressible fluid(29] and the plane stress formulation for a similar fluid re-
inforced with inextensible fibers/3][23]. In both cases the velocity is the primary
variable. The secondary or constraint variable is an arbitrary stress, in one case
a hydrostatic pressure, in the other a tension stress in the fiber direction.

3.3 Mixed Penalty Formulation

Implementation of penalty formulations in problems of incompressible elastic-
ity and flow, such as the Navier-Stokes equations, has taken two forms, one
irreducible [30], the other a mixed technique [31]. By analogy with Stokes
flow [31] [32], we may write a mixed penalty formulation for the current problem,
the first step being the construction of an approximation for the tension field, as
follows:

T

T=ca’e=caa’Sv;asa — oo (37)

Discretization of equation (37) is followed by substitution into (35), leading to
the following penalized system:

[(Klf)T _I;:/It}[i}¢[g}:0;asa—>oo (38)

where M* correlates exactly with the pressure mass-matrix for Stokes flow (31],
and will thus be known as the tension mass-matriz, defined as follows:

M, :/andeQ (39) :
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As the tension field may be discontinuous between elements, a* is eliminated,
yielding
{K + aK!(M") (K }a" = f (40)

As the penalty number a tends to infinity, satisfaction of the inextensibility
constraint is achieved.

Even though the only solution parameters remaining in the penalized system (40)
are the velocity unknowns, a¥, the system is still a mixed system, as the ten-
sion constraint matrix K¢ contains both velocity and tension shape function
terms (36). For this reason, this method is known as the mized or consistent
penalty method.

After solution of the velocity field from (40), the tension field may be recovered,
as follows:

at = o(M) 1K) a® (41)

4 Results

4.1 Computational

A specialised finite element program has been developed|3] for composite sheet-
forming problems, using the mixed penalty formulation of equation (40). The
program, known as FEFORM, is based on a general purpose finite element code
called PCFEAP [25], which was made available by the University of California
at Berkeley. The FEFORM code runs on a VAX 11/785 minicomputer, and
uses double precision throughout. For more details on the element and program
construction, the reader should consult references(3| and[23].

The element used in this work utilizes biquadratic velocity interpolation func-
tions, combined with bilinear tension stress functions. This element is known as
the Q 9/4 element and is shown in Figure 1 to have 9 velocity nodes and 4 in-
ternal tension stress nodes. The inputs to the program include the mesh and
node location, the initial sheet dimensions, thickness and fiber orientation, the
material viscosities uy and ur, the total time and number of time increments and
finally, the loading and boundary conditions.

The element matrices, K, K® and M! are evaluated using a 3 x 3 Gaussian in-
tegration scheme and the system equations (40) solved for the velocity unknowns
at each step. The total stress is then evaluated using equation (26), with the ex-
tra stress and reaction stress terms both being extrapolated to the velocity nodes
before being added together. Further details on the stress calculations and fiber
orientation and sheet thickness updating procedures are contained in reference[3].

The results in the next section were obtained by executing the program on a
VAX 11/785 minicomputer. As the equation system is linear, no special solution
technique is required, the only extra effort compared to problems of Stokes flow
being the evaluation of the constraint matrices. The formulation is not, therefore,
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very c.p.u. intensive, varying from about 33 seconds c.p.u. time per time step
for a 24 element mesh to about 3 minutes per time step for the 192 element
mesh used in the following examples. The user must ensure that the time step is
small enough to maintain the small-deformation assumption at each step, within
certain realistic economic bounds.

4.2 Examples

A previous paper[23] presented results for the analogous highly-anisotropic lin-
ear elastic formulation. The Q 9/4 element was shown to give acceptable dis-
placement and stress results, with extensions in the fiber direction converging to
machine zero for a penalty number of 1016, The results were shown to compare
well to closed-form solutions for the simple case of the 0° beam and highlighted
the existence of extremely thin boundary layers of high stresses in these ma-
terials. Rather than repeat these results, this section will concentrate on the
deformed states and updated fiber orientations after various time steps. All re-
sults shown are obtained utilizing a penalty number of 10'° and typical APC-2
viscosities[6][11] of u; = 6000 N.s/m? and pr = 3500 N.s/m?.

The 192 element mesh used is shown in Figure 2, with built-in boundary
conditions at one end and either uniform shear or tensile loading applied to the
other end. Figure 3(a) shows a tensile loading being applied to a beam with 0°
fiber orientation (depicted by the arrows) for a total time of 15 seconds, using a
time step of 0.5 seconds. After 2 seconds, the deformed geometry, shown in Figure
3(b) resembles the classical first time step results of simple shear deformation[23],
though in this case, the fibers clearly follow the deformation. Figures 3(c)-(e)
show the deformations and updated orientations after 9,10, and 15 seconds. All
the deformed geometries are shown to scale, thus we can clearly see that the
inextensibility condition forces the edge originally at z = 0.32 to move inwards.
At the later times, 10 and 15 seconds, we also see some curvature starting to
occur in the beam, near the built-in edge.

The reason for this curvature is seen in the contour plots of updated thickness
in Figures 5 and 6. The through-the-thickness strain-rate, which governs any
change in thickness is dependent on the 1 and 2 normal strain-rates. In this case,
as the fibers lie in the x-direction, the 1-strain rate will be zero. The 2-strain rate
is dependent on the variation of the y-velocity, v in the y-direction. In plane-
strain cases[33] it may be shown that the dual constraints of incompressibility and
fiber inextensibility dictate that the velocity, v may not vary in the y-direction.
However, in our case the plane stress elements do not enforce Incompressibility
in the plane but rather update their thicknesses after each time step to conserve
volume. This explains the variation in thickness after 5 seconds, seen in Figure
5. This variation in thickness of +2% and -1% causes a gradient in element
properties, which in turn causes the curvature near the built-in end at later
times. The thickness contours at fifteen seconds, shown in Figure 6 show an even
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more pronounced variation in thickness, from +15% and -4%. It should be noted
that fiber orientation changes and thickness changes are cumulative, even though
they are calculated by using the current values of strain rates at the end of each
time step.

A second example of this updated geometry and material properties is that of
tension applied to the end of a 90° beam. The original mesh is shown in Figure
7(a) and deformed meshes after 5 and 15 seconds in Figures 7(b) and 7(c). The
remarkable aspect of these solutions is that the inextensibility of the fibers in the
y-direction precludes any change in y-dimension of the beam as it elongates. The
increase in beam area in the plane i1s accompanied by a uniform decrease of beam
thickness throughout. Finallv, we note that the fibers do not rotate, as there is
no shear strain term to cause rotation.

Finally, we present the updated solutions for a tensile stress applied to the end
of a 45° beam. The original mesh and fiber orientation is shown in Figure 8(a)
and the deformed mesh at 5 seconds in Figure 8(b). Again, we see a curvature
effect near the built-in end, which becomes more pronounced in Figure 8(c) as
the beam continues to be extended at 15 seconds. It is possible to present the
rotated fiber directions as arrows but it is perhaps more instructive, in this case.
to show the same information in the form of contour plots, as depicted in Figures
9 and 10. Fiber rotation varies from 42.3° to 37.0° at 5 seconds, and from 38.8°
to 23.6° at 15 seconds. Finally, the thickness contours for 5 and 15 seconds are
shown in Figures 11 and 12. The thickness decreases everywhere at each time
step, with the maximum thickening occurring at the ¢ = 0,y = 0.16 top left hand
corner. This makes sense, as most extension occurs perpendicular to the +45°
direction. After 15 seconds, the thickness change varies from -9.3% to -17.7%.

5 Conclusions

A finite element methodology has ben demonstrated for analysis of composite
materials sheet-forming problems. An Updated Lagrangian solution scheme has
been adopted to describe the deformation of the material, involving dimensional
and fiber orientation field changes after each time step. The formulation in-
corporated the highly anisotropic nature of these materials by introducing the
kinematic constraint of inextensibility in the fiber direction. The plane stress
case studied led to a mixed system of equations, directly analogous to those of
Stokes flow, amenable to solution by penalty methods.

The FEFORM finite element code was seen to have the capability to deal
with the concepts of changing fiber orientation and thickness fleld as the with
progressing deformation. A number of simple beam examples were demonstrated
involving significant changes in both thickness and orientation. The results il-
lustrated the non-intuitive nature of deformations of highly-anisotropic materials
and showed the potential of this approach for simulation of composite sheet-
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forming processes. At present the program is limited to problems of plane stress
only, but it is hoped to extend the capabilities to deal with curvilinear shell-type
structures in the future.
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7 Appendix: Notation

a Fiber orientation vector.
a’ List of nodal velocities.
aP List of nodal pressures.
a® List of nodal tensions.
a Penalty number.
b Body force vector.
BY Velocity shape function derivative matrix.
C! Consistent penalty constraint matrix.
d Deformation rate tensor.
D Constitutive matrix.
§ Kronecker delta function.
(Aa), Incremental change in fiber orientation vector during nth time step.
(At), nth time step.
¢ Strain rate vector.
§€ Virtual strain rate vector
f Residual (right-hand side) vector.
I'; Traction boundary.
K Stiffness matrix.
K! Tension constraint matrix.
K? Pressure constraint matrix.
M Tension mass-matrix.
m Cosine §.
r pr Longitudinal shear viscosity.
pr Transverse shear viscosity.

* n Sine 6.

-
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n Unit normal to boundary.

n, Number of velocity unknowns in element.
n; Number of tension unknowns in element.
NV Velocity shape function vector.

N* Tension shape function vector.

) Problem domain.

p Arbitrary hydrostatic pressure.

Q Matrix used to construct stiffness matrix.
S Partial derivative matrix.

o Stress tensor.

T Arbitrary tension stress.

T Discretized tension stress.

t Traction vector.

f Fiber orientation angle.

v Velocity vector.

év Virtual velocity vector.

V Discretized velocity vector.

V' Volume of domain.

z; Components of Eulerian axes.

Xi Components of Lagrangian axes.
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Figure 1: Q 9/4 Biquadratic Velocity / Bilinear Discontinuous Tension Stress Element

///

p

Figure 2: Loading Cases 1 & 2: Uniform Tensile and Shear Loads Applied to Beam End.
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(b) Updated Geometry and Fiber Orientation After 2 seconds, 4 Time Steps

(c) Updated Geometry and Fiber Orientation After 5 seconds,
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Original Thickness = 0.001.




fm e A e e e

| i i
i ! |
| ] !
! A I} o o
' ] ! o A
. K 5 1 { . S N N Tty
g SN R S S R YR i = S o © DO
S O N LR [ W LS Vo | N SR NN S S D A E o m
........ e (S S N N B N I T A S N N m mn
S (N T [ R T R Y R U /N W S A Y S el
o N ' I ! 1 I I I f N o s
. | G L | X | e N b TG
2 45
177} =3NS
5§ 83
_ : I = S
! | N I ) ] | R _ [ [ LA I T S m " T
] i | ! I ! | [ [ ! [ I ] oo ) S 58
] i O O O A T T N T | | S P N (WY LA PO e O e m:m
! I o I | I ) _ ! LR R R I B S A - = m
! 3 N T T | I . T I T N 8 SoR=
K | | I K | | | | | | | ! (I . 38 m m
! ] ] ! ) ] I I i ] ' 1 ! ] I ! —~ o L.
Ko = . Am
! ] 1 ] f ! ! i | ! | ! ! ! e I — A AW
! | [ ! | i ] _ f ! [ [ ] i I 1 g 4 w
! ] i ] | i ! ! | ] i ! ! ! | ! g 0 i
! | I ] ! J ! I ] ! I ! N l i ] m ﬁ -
| | | ! _ | ! | | | | | | | i % g g
= BB
258 E
=268 0
= - - = - = ——p—— e o) % e&
T i e oo S U SR S RS O R IO T [T S %PGd
B (e SRS LU SN I B (S oNTHR OO SR G P I O O 5498
b Loeagiic Lo L b 4l U T el o M.mb.mm
Bra et (ot S RNFERS SOV B S VI WD) O R RN TR TR T .| m%WyU
S| | O T T (O 1 LI IR OO I S O T S Y s g
e o T I T NI I VI I O B T T o~ mSLe
S e o Y N Y YN Y VIR Y AN YR B NS O Y S Y O Y ! ~ e
e e L T A ST 00 VNG VI NI AP AP P O P .
Dl et [ 1S SOUBSNY Y N ) NV SO BT VO O P TR I S mu
U ST D Y T . O (T LN [ S T N T T i
S T R T O Y R T 1 S [ N D U R R T
S I . = =8 SO S A | N | Aol




(b)

(a)

hd

(b) Updated Geometry after 5 Seconds, 10 Time Steps;
(c) Updated Geometry after 15 Seconds, 30 Time Steps.

Figure 8: Beam With 45° Fiber Orientation Subject to Uniform Tensile End Loading
(a) Original Position;
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