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Introduction

Thermoplastic composites are often processed by heating and shaping prepregs.Hence to
understand the forming process for these materials a reliable model for the molten
composite has to be formulated.It has been suggested ' that such a model can be
obtained by extending the continuum theory for fibre-reinforced solids initiated by Adkins
and Rivlin 2 to fluids.This approach is based on an incompressible Newtonian liquid
reinforced by inextensible fibres and is termed the Ideal Fibre-Reinforced Fluid model.

One of the problems encountered during the formation of composite components is the
deviation of the fibres from the axial direction.The deviations can be divided into two
types:those which occur at right angles to the shear planes (buckles) and those which
occur in the shear planes (wrinkles).Such perturbations can be studied using a stability
analysis.The continuum model outlined above is particularly well suited for such an analysis
because it allows kinematic and rate dependent phenomena to be examined and fibre
instabilities are known experimentally to depend on the rate of deformation.3,4

Boundary conditions can also play a crucial role in determining whether and what
instabilities can occur.In this paper two different conditions will be examined.First the
effect of a traction free surface on buckling instability is analysed.The second case deals
with the effect of resin rich layers.These have been found experimentally 5 and used in

some analytic predictions. ©:7 Such layers reduce shear stress by lubricating the flow and

thus can allow wrinkles to develop under certain circumstances.




§1 Governing Equations

In the simple continuum model proposed the liquid is assumed to be incompressible.This

constraint gives rise to the equation
du/dx + OJv/dy + OSw/dz = 0 (1)

Here x,y and z represent a cartesian coordinate system in which u,v and w are the
components of velocity.By using index notation this equation may be written in the more

compact form
Ouj/0x; = OJu,/Ox, + Ou,/dx, + Ou,/Ox, = 0 (2)

The index i takes the values 1,2 and 3 and as is conventional a repeated index denotes
summation over all possible values of the index.In this notation X, X, and x, are the
cartesian coordinates (equivalent to x,y and z) and u,,u, and u, are the associated
velocity components (equivalent to u,v and w).

The fibres shall be assumed to convect with the liquid during the flow i.e. an element of
liquid will remain alongside the same section of fibre throughout the flow.This idea has

been used in the context of solid composites and can be expressed & by the equation

8ai/8t + ujaai/aXJ = ajaui/an (3)

where t represents time and a; are the components of a unit vector denoting the direction
of the fibres.
The second kinematic constraint of fibre inextensibility (aja; = 1) yields the equation

ajajDy; = 0 (4)

where the components of the rate of deformation tensor Dj; are defined as

Dij - f(aui/aXJ + auj/axi) (5)




To complete the description of the molten composite a constitutive equation relating
stress to the rate of strain is required.There is some evidence ° to suggest that molten
thermoplastic composites exhibit a Newtonian response during shearing flows,after an initial
yield stress has been overcome.Thus a good model for the moiten composite is that of a
linear viscous fluid reinforced by inextensible fibres.The constitutive equation for such an

anisotropic fluid is

Tij = -Nn 5ij + Taiaj + ZnTDij
(6)
+ 2(nL - nr)(ajagDgj + ajaxDy;)

Tjj are the components of the stress tensor and 8jj is the Kronecker delta which is

defined as :
O34 1=igudly, e b= rul bjj = 0 when i #j

Two distinct viscosities arise from the highly anisotropic nature of the fluid.The
longitudinal viscosity (n1) and transverse viscosity (nT) are associated with shear along and
perpendicular to the fibre direction respectively.Ilt should be noted that although the
molten composite is being modelled as a reinforced Newtonian fluid the constitutive
equation (6) is highly non-Newtonian because of the anisotropy introduced by the fibres.
The pressure,ll,and the fibre tension,T,are arbitrary functions representing the reactions to
the kinematic constraints of incompressibilty and inextensibility respectively.They are
arbitrary in the sense that their values cannot be obtained from the constitutive
equation.Instead they are determined by solving the equations of motion with appropriate
boundary conditions.If the effects of body forces (e.g. gravity) are ignored then the three

equations of motion take the form

aTij/an - p(3uj/0t + uj aui/axj) (7

where p is the density.




§2 Shear Flows

Molten composites can flow by shearing along or transverse to the fibre direction.This
paper is concerned with longitudinal shear flows in unidirectionally reinforced composites in

which the fibre direction and velocity are of the form

a = (0,0,1)

(8)
g = (0,0,w(x))

The fibres lie along the z-axis and the x-axis is perpendicular to the fluid surface.The
axial stress gradient AT zz/07 is assumed to be zero so that the velocity assumes a linear
profile.This is called a longitudinal plane Couette flow.

Units of length are chosen so that the flow occurs between two parallel plates at x = 0
and x = -1 which are moving with velocities w = 0 and w = -V respectively. The usual

no-slip conditions are assumed to hold at the plates.The full solution for such a flow is

u = (0,0,Vx)
a = (0,0,1)
Ty = Ty = M)
)
Ty = -1 + T = mx y)
Txy = Tyz = 0
Txz = nmLV

The pressure IT is at most a function of z which is fixed by specifing either of the
normal stress components Tyx or Tyy.The presence of the arbitrary function m(x,y) allows
for the possibility of the fibre tension varying in the x and y directions.The arbitrariness
in the tension is removed when the remaining normal stress component T,, is specified at

one end (z = constant) of the flow region.

?
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Shearing flows of this type can also occur if the upper plate is removed to give a
traction free surface at x = 0.This boundary condition imposes a discontinuity in the shear
stress at x = 0 which can only be equilibrated by having singular fibres at the
surface.Singular fibre surfaces carry a finite force F but an infinite stress and are a
feature associated with inextensible fibres.They have been investigated in the context of
fibre—reinforced solids by several authors. '0.'' The singular fibre surfaces of the idealised
model manifest themselves in real composites as regions of high stress concentration across
which the stress changes rapidly.

To satisfy the zero traction boundary condition the stress components of solution (9) have

to be modified to the following form

Txx = Tyy =0

Tzz = T = nLVzé(x) + m(xy)

Txy = Tyz = O i
Tyxz = 7LVl - H(x)]

F = qLVz

where 6(x) is the Dirac delta function and H(x) is the unit step function.
It should be noted that since the force in the singular fibre layer is linear in z the

surface fibres change from being in compression to being in tension at z = 0.

§3 Perturbed Flow and Stability

The flow situations described by equations (9) and (10) are based on the assumption that
the fibres are all aligned exactly parallel to the z-axis.However it has been noted '2 that
in practice appreciable misalignments are present in nominally unidirectional samples.For
the forming of composite components from molten prepregs it is important to know
whether these deviations will significantly effect the end product.The orientation of fibres is
particularly important since this often has a critical role in determining the compressive

strength of the composite component. 3,14




Small deviations from the ideal flow can be analysed using perturbation theory.Using this
theory the evglution of perturbations with time can be studied.If they can be shown to die
away with time then the unperturbed solution is stable.However,if the perturbations grow
with time then considerable deviation from the basic flow and fibre direction can occur

and the basic flow is unstable.

The analysis assumes that initially (t = 0) there are small imperfections present in the

system.The ensuing time dependent solutions are then  expressed as series in a small

non-dimensional parameter e¢,in which the first term in each series represents the steady

(time independent) basic flow.Hence the full solutions are written in the form

Ut = u + eu'(x,y,z,t) + 0O(e?)
Gt = a + ea'(x,y,z,t) +  O(e?)
Mege = M + ell'(x,y,z,t) + 0(e?) (1D
Tiot = T + €T'(x,y,2,t) + 0O(e?)
Fiot = F + €eF'(x,y,z,t) + Ofe 2)

It should be noted that although the perturbed velocities are small compared with V the
associated displacements may become large as time progresses.

For small deviations from the basic flow it can easily be shown that the first order fibre
perturbation is of the form

a = (a',b',0)

The component a’ represents buckles which concern deformations that are perpendicular

to the shear planes.The component b' concerns fibre deformations in the shear planes.This \
phenomenum is termed wrinkling.




The first order perturbations shall be assumed to take the form

u' = Real { u*(x,z) exp(pt) }
a* = Real { a*(x,z) exp(pt) }
M' = Real { M*(x,z) exp(pt) } (12)
T' = Real { T*(x,z) exp(pt) }
F' = Real { F*(x,2) exp(pt) }

The real part of the complex number p gives information about the stability of the
flow.If it is greater than zero then the perturbations will grow exponentially large as time
increases and the basic solution is unstable.If the real part of p is less than zero then the
basic solution is said to be stable to this perturbation mode because the distortions die off
with time.

The linearised governing kinematic equations are obtained by substituting the solutions
defined by equations (11) and (12) into equations (1),(3) and (4) and picking out those

terms of order e.This gives

du*/3x + ow¥/3z = 0 (13)
pa®* + Vx 8a*/3z = du*/dz (14)
pb* + VX db*/3z = ov¥/3z (15)
ow*/dz + Va¥ = 0 (16)




In a similar manner the stress components corresponding to these perturbations are

obtained from the constitutive equation (6).
T'x = - + 297 du*/ax + 2V(n - n)a*

= - + 2L, du*/3x

Ty = -
Ty, = - + T + 2Q2q - 97)8w* 3 + 2V(gL - np)a”
- - + T% + 29 3w¥/3z (17)
T*xy = T v/ + V(i - 7r)b”
T*%z = Ta* + 5 (3w"/3x + ou*/dz)
T*yz sinTbT o n ov'/oz

It is assumed that the boundary conditions for the unperturbed flow are such that the

unperturbed fibre tension T is a constant.The equations of motion then yield

-oIm*/3x  + 29 d%u*/dx?2  + nL(02u*/3z2 + 3?2w*/3x3z) +

T da%/dz = p(pu* + Vx du*/dz) QY
T 82v*/8x2 + nL82v*/8z2 + V('r]L = nT)ab*/aX +
(19)
T db*/8z = p(pv® + Vx ov*/dz)
|}
-oM*/3z + 3Tz + np(32w*/3x2 + 32w*/3z2) +
(20) ‘

T da*/3x = p(pw" + Vu* + Vx ow*/3z)




§4 Fibre Buckling

It is apparent from the foregoing equations that the two types of fibre perturbation do
not interact and hence they can be discussed separately.In this section fibre buckling will

be analysed with no fibre wrinkling so that
b* = 0 (21)

It is also reasonable to suppose that there is no component of the perturbed velocity in

the y direction and thus
Vi o= 0 (22)

This choice of b* and v* ensures that the kinematic equation (15) and the second
equation of motion (19) are satisfied.The three remaining kinematic equations (13),(14) and
(16) are relations between a*,u* and w*.It is possible to obtain solutions for these
quantities in terms of an unknown function of x,f(x),and an unknown function of

z,8(z).The solutions are

a* = -dg/dz (23)
u¥ - -pg(z) - Vx dg/dz (24)
w¥ = V( g(z) + [(x)/p) (25)

These equations can be substituted into the first equation of motion to give

aM*/ax + (T + pyp) d2g/dz? + Vnypx dig/dz? =
(26)

p( p2g(z) + 2pVx dg/dz + V2x2 d2?g/dz? )

If it is assumed that the periurbed pressure gradient OM°/3x depends on x then the terms

independent of x can be equated to give

(T + pnp) d?g/dz? = ppig(2) (27)




This has periodic solutions of the form
g(z) = C, cos (Kz + ) (28)

where o and Cj,i = 1,2,3,.. are constants here and in all subsequent expressions.These

solutions represent buckles of wavelength (2x/K) if K2 is positive,where

-nn 2
K2=L 29
T + pn. )

This may be regarded as a quadratic equation in p which has the solutions

-nLK? & (9 ?K?® - 4K2Tp) ?

Pr. ™ 20 (30)

Therefore when the tension in the fibres T is positive both of these values of p have
negative real parts.Then since the buckles depend exponentially on time as given in
equation (12) they will decay in magnitude as time increases and the system will be stable
with respect to sinuscidal fibre buckles.Any sinusoidal buckles which are present initially
will be damped out during the flow by the effect of the positive tension.It should also be
noted that as the magnitude of the tension is increased they will decay at a faster
rate.Hence it is desirable in practical situations to have as large a tension in the fibres as
is possible.

If the fibres are in compression then one of the values of p in (30) will have a negative
real part and this will cause any sinusoidal buckles to grow as the flow evolves.In the case
when the tension is exactly zero the fibre buckles will neither grow nor decay:any buckles
which are initially present will remain unchanged during the remainder of the flow.

The perturbed stress component T*yy (= -IT") can be obtained by equating all the terms

which depend on x in equation (26).Upon integration with respect to x,it is found that

m = Vx2(3K2qp + pp) dg/dz - (pV2K2x¥/3) g(z) + I(z)
(31)
The function of integration I(z) can be determined by applying the appropriate boundary
conditions at the traction free surface.If it is assumed that the small perturbations do not
give rise to any tractions above the bounding fibre,then it is shown in App. 1 that the

appropriate conditions are

- - Vnz da*/0z at x =0 (32)

nL(Bu*/0z + Jw*/3x) = dF*/dz at x =0 (33)

A



The second of these equations can be used to find the singular force which results from
the perturbation.

The perturbed axial velocity w s given in terms of the unknown function f(x).This may
be determined by equating the terms independent of z in the third equation of motion
(20).

f(x) = C, exp [(pp/n)i%] + C, exp [-(op/71)?t ] (34)

The perturbed axial stress T*ZZ is obtained to within an arbitrary function m*(x,y) by
integrating the remaining terms in equation (20) with respect to z.The arbitrary function is
fixed by applying boundary conditions at one end (z = constant) of the flow region.

The full solution can be expressed in terms of the functions f(x) and g(z) as follows:

a* = - dg/dz b* = ¢ = 0
vt = -pg(z) - Vx dgdz Vet m0 v o= V( gz) + f(x)p )
T%x = -Vx2(4n K2 + pp)dg/dz - 2Vy dg/dz +
K2[Vyrz + (V2x3/3)]g(z)
Ty = -Vx2(4n K2 + pp)dgdz + K2[Vypz + (V2x%3)]g(z)
T*,, = gLV dg/dz + m*(x,y) (35)
Ty = Ty, = 0
T'y; = -T dg/dz + mnp[ (Vip) di/ffx - p dg/idz + K2Vx g(z) |

F* = -pmg(z) + V(C, - C)Mem/p)t z + C,

The sinusoidal buckles in the fibres have caused a perturbation in the force acting in the

singular fibre surface.This additional force consists of both a sinusoidal and a linear

variation with z.




§5 Fibre Wrinkles

In this section linear shear flow between two flat plates shall be examined.The basic
solution for this flow is given by equation (9) and no singular fibres are present because

of the frictional forces at the top plate.The presence of the parallel flat plates will inhibit
any buckling of the fibres and hence

(36)

Also if the fluid is to remain in contact with the plates at all times there must be no
velocity in the x direction i.e.

(37)

With these results equations (13) and (20) yield the perturbed velocity in the z direction.

*

W = Cgoexp [(pp/nL)2x] + Cg exp [ -(pp/npL)%x] (38)

In §4 the buckles were assumed to be sinusoidal and similarly the wrinkles shall be

chosen to have a sinusoidal variation of wavelength (27/K) in the z direction.Then b* and
v may be expressed in the form

b*(x,z) = bO(x) exp (iKz)
vi(x,z) = vO(x) exp (iKz)
Using these expressions equation (15) simplifies to

(p + IKVX)b® = jKvO

(39)
This can then be used with equation (19) to give
d2vo iKV(n - np) dv® I
T dx« (p + iKVx) dx (40) :
o - eiwe - KL - G v ko] - o

S S S '




Providied that p is non-zero this equation has a series solution of the form

VO = M(l + m,x2 + m,x3 + mx4 + ... ) o+
(41)

2 3 a
NG N, %2a#F Dy Hnixs @ mE )

(The coefficients m,,m, and n,,n, are listed in App. 2.)

One possible explanation for the localised fibre wrinkling which has been reported in real
samples 'S is the presence of a resin rich layer.Due to the lubricating effect of the resin
a friction free layer can form in which no shearing stress can be supported.If this layer

occurs at the top plate and is of depth 4 the boundary conditions are
Txy=sz=Tyz=0 for -y <x <0

At x = 0 these conditions become

dvo iVK(ny - )

o =
A S v 0 (42)
dwl/dx = 0 (43)
ve(pn, + T) = 0 (44)

The first and last of these conditions along with the series solution (41) give

N =iVK(nr, = n1)
M PT
M(p‘r)L +T) = 0

To ensure a non-trivial solution p must take the value
Boarma: ~L/0L (45)
Thus when the fibres are in tension any sinusoidal wrinkles in the resin rich layer will
decay,but when the fibres are in tension they will grow exponentially with time.

Condition (43) constrains the perturbed axial velocity to be of the form

w¥ = Cg (exp [(pp/mL)ix] + exp [ -(pp/np)ix]) (46)

- —




§6 Conclusions

In this paper the Ideal Fibre-Reinforced Fluid Model has been used to analyse the
development of fibre misalignments during shear fiows of nominally unidirectional molten
composites. The mathematical model is in agreement with observations of real samples
which have found two distinct types of fibre deviation.Using a stability analysis the model
has been used to predict what stress should be applied to alleviate such misalignments.

In the two flows which have been examined the important factor for determining stability
has turned out to be the fibre tension T.This is the difference between the axial and
normal component of stress (T = T,, - Tyx) and the imporiance of such stress
component differences is characteristic of non-Newtonian fluids.The requirement for T to
be positive for stability is in accordance with intuition and has been derived in other
solutions of this type.'® Furthermore the stability criteria are independent of the velocity
V of the lower plate.

These results suggest that during the manufacture of composite components from molten
pre-pregs it is important to ensure that the fibres remain in
tension.Compresive forces in the fibres will cause any misalignments which are present to

grow and so lead to poor alignment and reduced strength in the finished product.
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Appendices

F + &F

p t by

Fig. 1 Equilibrium of a Small Element

Consider a small section s of the composite containing a fibre as shown in Fig. 1.The
components of stress normal and tangential to the fibre direction are represented by ¢ and

* and T denote their values on the upper and lower sides

7 respectively. The superscripts
of the element.The force in the fibre is F.
The element is assumed to be in equilibrium so that forces can be equilibrated along and

normal to the fibre direction to give 7

[Cf] F ani/axi

[r] -aj OF/0x;

where the square brackets [] denote a jump in going from the upper to the lower side of
the element and n; are the components of the unit normal to the fibre direction.The
components of stress can be expressed in their cartesian components by using the following

expressions

o] = [Tjjinin;

[r] = [Tij]aiaj




Hence the boundary conditions are
[Tij]“inj = F 0Ony/ox;
[Tij]ai“j = -a; JF/0x;
Since the surface above x = 0 is traction free these equations become

Tij“inj = F ani/axi

Tijainj aj OF/3x;
To first order in ¢ @ and n are
a = (ea'0,1) n = (1,0,-ea")
Thus the first order boundary condition normal to the fibre direction is

—2sza* + T*xx = F 3a*/3z at x =0

By substituting the stress components and singular force this equation may be written as

—ZnLVa* + 2L du*/3x - M = Vrz 3a*/3z at x =20
However
-2y va*t o+ 29 ou'/ax = 29 (0w*/3z + du*/3x) = 0

and hence the condition becomes
- = Virz da*/oz at x =0

To first order in ¢ the second condition is

*

AN (T = T ;) + T %z = 7L.(Bu™/3z + dw*/ox) = dF*/dz




The first two non-trivial coefficients in the first series are

ep? + p2n K2 + TK?p + K2Vi(nt ~ 1)
2n7p?

_ KV LI 3 2 2 2y 2 - - 2+
3 6nitp: Tpa[(nT M {Tep? + p2n K2 + K2V2(q - 97)] - pn TK

3
!

p?nT(2nLK? + 3pp) ]

The first two non-trivial coefficients in the second series are

iKV(nt - np)
2pnT

n =

1
" T Eyrer [Ksz(va = m?L) + por(ep? + pnp K2 + TK’)]




