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Abstract

The behaviour of short fibre filled polyethylene terephthalate melt during
the filling of an irregularly shaped thin cavity is analysed numerically.
The flow is assumed to be a Hele-Shaw and a coupled solution procedure
is described for the stream function and the energy equations. The
solution of the governing flow equation as the fiuid domain deforms and
enlarges is described by the use of numerically generated meshes that
conform to the fluid boundaries at every time step. The temperature field
during filling is shown to be three-dimensional with convection
dominating the planar flow, and diffusion across the thin gapwith. The
flow front is considered as fountain flow and suggestions are put
forward as to how to tackle the heat transfer problem in this region.
Motion of the fibres is described using the Dinh-Armstrong model which
was developed for semi-concentrated fibre suspensions.

1. Introduction

Unfilled PET resins exhibit excellent mechanical, electrical and chemical
properties but suffer from poor processability, low distortion
temperature and poor impact resistance. Perhaps the most severe
defficiency of PET is its poor processability which is due to its slow
crystallisation rate.

Glass fibre reinforced PET resins overcome two of the above deficiencies.
The heat deflection temperature rises spectacularly, while impact
properties are also significantly improved. Processability still remains a
problem, however, as the need for high mould temperatures leads to
relatively long cycle times.

The problem involving flow in an injection mould where filling is
difficult does require inclusion of heat transfer cooling of the polymer. If
the moulding conditions, such as thin walls, long flow sections, or
extremely viscous moulding materials threaten short shot occurrence,
then temperature changes must be included in the problem scope. It would
be useful to know if a mould of a certain cavity geometry, with a specific
material of known thermodynamic and rheometric properties, will result
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in a successful fill or result in a short shot.

In many injection moulding processes short fibre filled polymeric
suspensions are often used. Whenever such a material is formed, the flow
changes the orientation of the fibres. This fibre orientation pattern is the
dominant feature of a short fibre composite. The composite is stiffer and
stronger in the direction of greatest orientation, and weaker and more
compliant in the direction of ieast orientation. Theories exist which can
predict the mechanical properties of the composite once the fibre
orientation is known(1,2,3,4).

In this investigation, we have used a computational code (5) to analyse
the flow of short fibre filled PET melt in an injection moulding process.

2. Theoretical considerations

ic_rheological ion
Many equations of state have been developed over a period of time to help
in the understanding of general flow behaviour of fluids through thin
cavities as encountered in injection moulding process.
We can quite easily combine equations (6) corresponding to shearing in
different planes, in a single equation relating the stresses Pik which

correspond to a rate- of- strain tensor ey :

Pig + A = Mo(€ + A=) [1]

Mg = Vviscosity, A; = relaxation time, A, = retardation time
If the material is assumed incompressible , any isotropic pressure can be
superposed without affecting the deformation, so that the full stress
tensor can be written as :

where I1 is arbitrary
In these equations the components ejk of rate of strain are defined in the
usual way, in terms of the velocity components vj in the three fixed
orthogonal cartesian coordinate directions Ox;, by the formula :

1r % 9
eﬂ(=5[3;"'yk] [31]

The stresses are also defined in the usual way with reference to the
orthogonal cartesian coordinate system (with the sign convention that a
positive P44 denotes a tension, a negative P44 denotes pressure ). In
simple shearing :

Pu=P21=t and Cp= €y
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are the only non-vanishing components of stress and rate of strain, so
that above equations [1] and [2] reduce to :

T + At = Ny (Y+2A5Y) [4]

A>M >0
The derivative of the quantities in the equations of state should be
defined in such a way as to have physical significance. (a) The derivative
should measure a rate of change following a particle of the fluid. (b) It
should measure an intrinsic property of a typical material element which
at time t is at (x4,Xx5,X3) when applied to a scalar quantity like pressure
or temperature. (c) It should account for the rotation of the material by
measuring vorticity components, as well as for the translation of the
material by measuring velocity components. A suitable definition for any
material derivative of any second order tensor, such as ejx and Pji is

given by (7)

Dejx
-3[— %’vJa +Zwl_]e]k+zwkjlj [5)
DP,  oP
ik _ 1k
™ 2 M 2 WiiPik + ;ijl’ij [6]

Wi = .l[ L k] = VOl'ﬁCity
ik = 7lo T W

It is necessary to simplify equations [5] and [6] to make them usable.
Several models have been developed from these equations, here we
consider those of Oldroyd (7) and Zaremba (8)

Oldroyd A
oP.. ov.P . av P .
1) mmj mmx_ “__L %
g + >, = 2Ge;; - Py (7]
ov:

& = -2-[5;_- + KJ] the deformation tensor

A is associated with the relaxation time




Oldroyd B
oP; _ NP K NmPri = 2Ge;; - Llp. [8]

In both cases G is associated with the modulus of material

Either of the Oldroyd equations can be used to solve flow problems in thin
cavities at steady state. For example, define a problem such that:

vl: -YXZ ’ V2=V3 =0

When Oldroyd A is applied to this problem the following solutions are

obtained:
E1150 , o
S 7 27 e AL ki by i

Pi3=P31=Py3=P35,=0

aVl
Ny=Pjj-Pyy= 2“’12@

ovy
N2 =Fo2 a3 =By
Pij (i=j) normal stress

(i#j) shear stress

Nl = first normal stress difference, N2 = second normal stress difference

So that using the Oldroyd A model we are able to calculate normal stress,
shear stress, and normal stress differences.

Zaremba model|

—i+ P

= 1

ov. ov

17 j
W = _[.:ﬁ = ]
Y 2 dxj &I

This model! was subsequently restated by Dewitt(8).

More recently, Leonov developed what is now known as the Leonov model
(9). The Leonov model is based upon the thermodynamics of irreversible
processes, and is capable of describing polymeric behaviour under
arbitrary elastic deformation. The model has been found to correctly
describe steady shear flow, the transition from rest state to
steady-state shear flow, stress relaxation following cessation of steady
shear flow and the superposition of small-amplitude oscillatory motion
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upon steady shear flow of a polymeric solution. The Leonov model can be
represented as :

Py =2£1“kci-k+ 2ust0,
where
Cjx = components of elastic strain tensor in the k" relaxation mode
p, = shear modulus in the k™ relaxation mode

p = shear modulus
s = dimensionless rheological parameter (0O<s<1)
8, = relaxation time in the k' relaxation mode.
The Leonov model has been used by Isayev et al (10) to relate stress and

flow fields in an injection moulding process to demonstrate the
usefulness of Leonov's model in solving flow problems.

Hele - Shaw flow
Classical Hele-Shaw flow in a thin cavity of arbitrary shape for an
inelastic non-Newtonian fluid under non-isothermal conditions, is
governed by (11):

- 2(nge) -2
0{ ov op
0='a—z'(ﬂ§;) e

%(bﬁwa—i_(bvho

pCp(—+u%r-+ aT) ka—2+n*{2 fl
Z
|

where b is the half gapwidth, the bar denotes an average over z, the
gapwise coordinate, and the shear viscosity is taken to be of the form:

n=n\{T)

where

=[ @) & )2}2

These Hele-Shaw model equations are based on several rather crude
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approximations: (i) the neglect of normal-stress and memory effects
associated with fluid elasticity; (ii) the neglect of the "fountain" flow
region in the vicinity of the advancing melt front, together with its
effect upon the temperature field; (iii) the neglect of thermal convection
in the gap-wise direction. However earlier one-dimensional and
two-dimensional flow simulations have invoked all of the above
approximations and still provided results in reasonable agreement with
experimental pressure measurements (11). The computer code developed
by Guceri et al (5) used for this investigation is based on the Hele-Shaw
flow model.

Short fibre orientation

The characterisation of short fibre orientation in a short fibre
suspension is a major concern in current polymer processing research.
Several studies have characterised the orientation state in fibre
suspension systems. Jeffery's (12) early work on the motion of an
ellipsoid in a viscous Newtonian fluid has been used by Givler et al (13)
to develop a computer code to predict the orientation angle in dilute
suspensions in confined geometries. Folger and Tucker (14) proposed a
phenomenological model which incorporates the effects of the
interaction among rigid fibres. In their paper, they used an orientation
distribution function to describe the fibre orientation for non-dilute
fibre suspensions. Dinh and Armstrong (15) developed a rheological model
. for semi-concentrated suspensions. In this model a constitutive equation
which requires the calculation of the fourth-order moments of the
distribution function is proposed to calculate the rheological properties.
All of the proposed models for. fibre suspensions require some form of
description of the fibre orientation. The simplest case is the use of a
scalar which is usually the angle between the fibre axis and one of the
reference axes. For 3-D cases 6 and ¢ must be used to specify the
orientation angle in spherical coordinates (14). At a given point and time,
the orientation distribution function for fibres provides a complete
description of the orientation state (16). The solution of the orientation
distribution function has aroused much interest. The governing equation
is a linear partial differential equation (PDE) and is also known as the
Fokker-Planck equation. No analytical solution is available when
particles in suspension are small enough for "Brownian" effects to be
considered. Although the orientation distribution function contains the
complete description, it is not always necessary to make use of this
function (17).

In this investigation, we employ the Dinh-Armstrong model for a semi
concentrated fibre suspension. We also show Guceri's (5) illustration of

how the solution of the distribution function is obtained in terms of flow
kinematics.
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Dinh-Armstrong model(14)

3
I

Gjj stress tensor generated in the homogeneous stress fields due to the presence of
of particles.

n number density of suspension

1 fibre diameter
P, i"" component of the unit vector denoting the fibre orientation

v (P, t) distribution function for the fibre orientation
H average distance from a given fibre to its nearest neighbour
= (nl)-1/2 for aligned systems
= (nl?) for random systems

p absolute viscosity of the fluid

u., = du,/dx, components of the velocity gradient tensor

Equation [10] can be rewritten as

Ii3n s
Gjj -“61n(Q) Uk, ijkl ks [11]

where

Sij is the fourth moment of the distribution function and is defined as
the fourth-order orientation tensor.

The equation of motion for the fibres can be expressed in the form of
Jeffery's equation with infinite aspect ratio (15):

Equation [12] is already built in equation [11] and the coefficient of the
integral in equation [10] is determined by using structural analysis of
semi concentrated suspensions (18).
i t istributi ncti
Given the initial condition of random fibres
for two-dimensions

1
\v(e,t=0)=-ﬁ [13]

for three-dimensions

1
W(e’¢ t"'O) = 4

i [14]
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Vo(P.t) =y (487 FP) 015]
3

¥(po) =gy (aa*ipp)2 (161

where

A is the deformation tensor and + implies its transpose and is defined as

% = 5 (173

in which x'; is the position vector at t = 0 and x; is the position vector at
time t. The solution to equation [15] can be explicitly written as (5)

1
We(e")=ﬁ[(A121 P Ail )1?2 + (8,8, + A,4,,)2PP,
-1 [18]
+ (8 + Aiz )Pzz]
; (11:1) _ ( cos ©
. 27 \sin®

The three dimensional solution of the distribution function can be
explicitly written from equation [16] as (5)

where

1 2 e ni2
v(6,0,1) =m[(Au + 45, + A3, ) + (A11A12+A21A22+A31A32)2P1P2

T ( ALAp +8,8,5+ A31A33)2PIP3

2 2 2 2
+(A12 + A22 + A32)F§

& (A12A13 +85,8,5+ A32A33)2P2 B

3
< (Ais 4 A223 + A323 )1)32] & [19]

P sin@ cos¢
P= (1)2) _ (sine sing
B B ~ \ cos6
3 Numerical solution procedure.
The ability to predict the flow characteristics and fibre orientation
during injection moulding is of significant interest today. A computer

code developed by Guceri et al (5) was used for this investigation. The
computer code uses a viscosity model to describe the flow behaviour of
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the fluid and it uses the Dinh-Armstrong model to predict the fibre
orientation at every point in time as the fluid fills the mould. The
computer code uses finite difference technique that allows for
continuous generation of meshes that are enlarged and deformed to
follow the injected fluid and fibres as the mould is being filled. The
governing flow equations, the energy equation, the constitutive equation
and the short fibre orientation are solved simultaneously (19).

Viscosity N

Although there are many viscosity models we have considered two which
show viscosity to be both temperature and shear rate dependent.

(i) Carreau/Arrhenius model

This model can be expressed as (19):

. (T-T,)A_ 7
1 y=nhExp [ ——2"n ] [20]
TO
E
. .27 2
NP =1, + (Mg +n,,) [1+ (A1) 7] [21]
where

T operating temperature
T, reference temperature

A, Arrhenius constant ( an empirical constant obtained from experimental )
(observations over a range of temperatures and shear rates)

M, kinematic viscosity ( operating viscosity )
Mo Zero shear rate viscosity

T, Viscosity at infinite shear rate

A time constant (associated with relaxation time)

n dimensionless power law index

Although the Carreau model describes polymer melt viscosity fairly well
it has one drawback. It is impossible to measure viscosity at infinite
shear rate. It is customary to regard the infinite shear rate viscosity as
zero. The Carreau model does not represent fibre filled polymer materials

very well.
C Artheni ol ( lified)
The modified Cross/Arrhenius equation is(20)
No(T)
M, = 5
. I-n
1+ (nyye)
where
o= Ll ,  © stands for the shear stress level at which 1, is in transition
c between the Newtonian limit 1, and the power law asymptote
corresponding to largey.
9
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Tp
No(T) =B Exp( )

B,, empirical constant
Ty, ameasure of the temperature sensitivity of n o
T operating temperature

For large shear rates:

] e 1- nT,
My 2 ng(c)l n,yn-lan(O') nExp(—.'rE)'Yn-l

This model is good for the description of fibre filled thermoplastic
materials and rubber compounds. It has the additional advantage of
reducing the temperature sensitivity by the factor 'n' in the power-law
region.
4 PET sample results

e i
Non-isothermal flow is simulated for the mould cavity shown in Fig.1.
PET is the injected fluid. The mould shape is approximately 19.6 cm
long,2 cm wide and has gapwidth of 0.32 cm. A constant inlet velocity of
40 cms! is
used. Inlet temperature used is 290°C. The mould walls are held at
constant temperature of 85°C. Cross/Arrhenius viscosity mode! is used.
The Cross coefficients of viscosity for PET at 290°C are taken as:

Mo = 1.81 * 102 Nm-2s

o =719 * 1072kN-1m?2

¥=3.06 * 10251

n=0.5
A sample of the meshes generated during the filling is shown in Fig. 2.
The temperature dependence is modelled using T = 290°C, Tp = 0.0240C-1.

By, is calculated to be 0.41. At the beginning of injection, a 5 x 15 x 10

mesh is used and this is continuously enlarged to a final mesh size of 70
x 15 x 10 at the instant of complete fill. The time step used is 0.0001 s
The pressure distribution at the completion of the filling stage is shown
in Fig. 3. At the instance of mould fill, the pressure in the inlet gate is
predicted to be 1738. 1kP,.

mperatur rofil
The three-dimensional temperature solution is displayed (Fig. 4) as a set
of contour plots in the x-y plane for three different layers in the mould
gapwidth: (a) the surface layer (i.e at z = 0.01111 cm); (b) the second
layer (i.e at z = 0.0222 cm), (c) the fifth layer (i.e at 7z = 0.0555cm). The
temperature profile when the mould is completely filled is shown in Fig.
5. The large temperature gradients near the mould walls are clearly seen.
The temperature at the free surface is higher than its neighbouring
points. This is probably due to fountain flow effect where fluid is s
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FIG. 1. Problem initialization: the mould shape is specified by user-input
nodes along the boundary. An initial fluid domain is assumed in the inlet

gate and an initial mesh is generated here.
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FIG. 4. The isotherms at three selected planes in the thickness (gap)

direction, T;01e = 290°C ang Twan = 859C.
— 299.34
27567
261.01
246.34
231.67
1217.01
! i 282, 34
|| 187.67
173.00
158,34
143.67
129.00
114.33
99.67
85.00

’_ﬁ 2%036
) 275,69

261.02
246.35
231.69
a17.e2
f | 282.35
187,68
173.81
(b) 158,34

- 143,67
129.01
114,34

99.67




— 292.79

277,95
263.10
248,26
233,42
218.58
283,74
188.89
174,85
159.21
’ 144,37
129.53

i 114,68

99.84
85.00




FIG. 5. The isotherm at the completion of mould filling.
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_u_m._aw. The gapwise distribution of the viscosity during the filling of the
mould.
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FIG. 8. The predicted fibre orientations at fill for three selected planes in

the gap direction.




convected up from the warmer mould mid-plane.

Temperature distribution through the mould gapwidth is shown in Fig.6
The temperature is seen to exceed the inlet temperature. This is probably
due to shear heating during the flow. The viscosity distribution across
the gapwidth is depicted in fig.7. There is large variation due to the
strong temperature and shear rate dependence of the fluid.

it ientati licti

The prediction of fibre orientation is shown in Fig. 8. Three different
layers in the mould gapwidth are chosen to display the fibre orientations
in the x-y plane: (a) at z = 0.01111cm, (b) at z = 0.02222cm, (c) at z =
0.05555¢cm.

5. Further work

There are several limitations inherent in the computer code used for this
investigation(5). (a) The computer code can only handle single inlet gates.
(b) The computer code cannot handle branching flows in the mould cavity.
Our next phase of work is to develop a computer code that can overcome
the above limitations. It is our intention to regard the flow as fountain
flow and can then use the Galerkin finite element method to calculate the
steady state free surface flow for an incompressible non-Newtonian
liquid under non-isothermal conditions. The Navier-Stokes equations
(where both inertia and gravity are. included) will be solved. We propose
to solve for velocities, pressure, and free surface location
simultaneously by a full Newton iteration. Fibre orientation will be
solved using the equations currently under development.
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