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Abstract

We develop a numerical method for calculating fiber orientation in the mid-surface of a
molded part of small thickness. Two-dimensional fiber orientation is predicted on the basis
of either Jeffery's equation or a constitutive equation for the orientation tensor. The
calculation is fully transient; it is performed on a time-dependent flow domain. The method
is based on finite elements. Updated finite element meshes are generated at every instant of
filling and allow one to perform an accurate calculation of the orientation even along the
boundary of the flow domain. The method is applied to several examples in plane and three-
dimensional geomeiries.




1. Introduction

The prediction of fiber orientation in injection molding is of prime importance in the
design of filled polymer parts with desired mechanical properties. It is well-known that
anisotropic mechanical properties are intimately related to fiber orientation. The numerical
simulation of filling and fiber orientation is a very difficult problem for several reasons : i.
the flow process is transient and generally non-isothermal; ii. although the Hele-Shaw
approximation is usually valid for the flow calculation, the effect of the fountain flow near
the moving flow front is such that fibers do not travel from the gate to their final position
within a surface parallel to the mid-surface; iii. despite recent progress, the constitutive
equations for fiber orientation in arbitrary flows require further progress.

In the absence of coupling between flow calculation and fiber orientation, wide use
has been made of Jeffery's model [1], which is however based on a number of strong
hypotheses. Jeffery's theory has been generalized (see e.g.[2]) to the calculation of an
orientation tensor. It is assumed that fiber orientation is described by a statistical
distribution; it is then possible to define a set of orientation tensors which are governed by
constitutive equations. The use of a finite number of orientation tensors requires a closure
approximation [2]. However, it is also possible to generate general constitutive equations
for the orientation tensor along the well-established principles of continuum mechanics.
Several models have also been made available for calculating flows coupled with fiber
orientation, such as Ericksen's theory for liquid crystals (3], the Dinh-Armstrong theory of
the integral type [4] or the differential model by Lispscomb et al. [5].

Coupled models have recently been used for simulating the flow of fiber filled
polymers [5-7]. These papers clearly show that the coupled calculation is a difficult
problem, and that such theories are presently limited to relatively low volume fractions. For
the decoupled theory, early work by Givler, Crochet, Pipes [8] and by Givler [9] was based
on the use of Jeffery's model in a general flow field; more recently, Advani and Tucker [10]
calculated the evolution of the orientation tensor in a compression molding application.

The purpose of the present paper is to apply the decoupled method to the calculation
of fiber orientation in injection molding, on the basis of Jeffery's equation as well as an
orientation tensor equation. It is clearly understood that using the decoupled method for
injection molding applications relies on a number of strong hypotheses which may
unvalidate the procedure in practical applications. It is known indeed that the presence of
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fibers may strongly modify the flow from Poiseuille to plug type. The absence of fiber-flow
interaction implies dilute fiber suspensions while volume fractions up to 50 percent are
typical in injection molding. Still, we wish to show how numerical methods can
demonstrate the effect of available theories. We assume at the outset that the molded parts
have a small thickness as compared to other characteristic dimenions and that their mid-
surface can be approximated by a set of planar facets. We wish to base the orientation
calculation on a fully transient velocity field in a deforming domain but, at the present stage,
we do not take fountain flow into account. Thus, our calculation is presently limited to the
orientation in a region which surrounds the mid-surface of the part. In the case of shear-
thinning, the width of the central region is large with respect to the actual thickness. We also
limit ourselves to isothermal situations, although the method used for calculating the flow
[11,12] has been extended to non-isothermal situations [13,14]. The implementation of our
method in a non-isothermal calculation would not pose any difficulty.

In section 2 we recall the basic equations of injection molding simulation and of
decoupled fiber orientation. In section 3, we briefly recall the finite element method used for
calculating the flow. In sections 4 and 5, we explain in some detail the numerical method
which we have developed for either solving Jeffery's equation or for calculating the
orientation tensor. In section 6, we test the convergence of the numerical method, and we
also evaluate the influence of the initial conditions and of the closure approximation.
Finally, we solve in section 7 two orientation problems on the basis of a complex geometry.
In particular, we show that orientation distributions based on either Jeffery's equation or on
an orientation equation give essentially the same resuls.

2. Basic equations
2.1. Injection molding

We wish to calculate the evolution of fiber orientation in the mid-surface of a thin
molded part, in which the thickness is much smaller than other characteristic dimensions.
We consider mid-surfaces without ribs or branchings. Under such conditions, it is possible
to obtain a good approximation of the flow field with the use of the lubrication
approximation, based on the fact that the velocity gradients in the thickness are much larger
than the gradients in the mid-surface. One then obtains the Hele-Shaw approximation of the
viscous flow [15], with the consequence that the velocity field can be derived from a
potential. In the present paper, we limit ourselves to isothermal flow, although the method
briefly described in section 3 has been extended to non-isothermal flow.




Let p denote the pressure at a point of the mid-surface. It can be shown that the
average velocity v, in the mold is given by the equation

- DY
v =-EVp, ¢}

where c is the half thickness of the mcld and Z is a scalar given by

c
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1) is the shear viscosity at distance & from the mid-surface. From the conservation of mass,

one finds that the pressure satisfies the following elliptic equation,

V.EVp)=0, 3)

with boundary conditions of the Dirichlet type on the moving front, and of the Neumann
type on the sides of the mold and at the gates, where the flow ratc is imposed. In solving (3)
with Z defined by (2); we make the important hypothesis that the velocity field is decoupled
from the fiber orientation in the fluid. In later work, it will be necessary to introduce an
anisotropic behavior of the fluid caused by the preferred orientation of the fibers.

The flow front moves with velocity v in view of the mass conservation. However,
for calculating the fiber orientation in the mid-surface, it is necessary to take into account the
velocity field in that surface. Since the pressure does not vary throughout the thickness of
the mold in the Hele-Shaw represeniation of the flow, we may use a fully developed
Poiseuille velocity profile for predicting the mid-surface velocity on the basis of v. For a
power-law fluid with a power index n, one obtains

v =v (2n+1)/(n+1), (4)
where v is the velocity vector in the mid-surface.
We will explain in section 3 how we calculate the velocity field in a mold of arbitrary

shape made of a number of planar facets. The velocity field that we will refer to in fiber
orientation equations is given by (4).




2.2. Fiber orientation : Jeffery's equation

A very simple model based on Jeffery's work [1] has been widely used over recent
years for calculating the evolution of fiber orientation in viscous flows. Jeffery's equations
are based on a number of strong hypotheses : one considers a single fiber of ellipsoidal
shape in a Newtonian solvant, where the velocity gradient is uniform. However,
experimental work [16] has shown the usefulness of Jeffery's equations, at least on a
qualitative basis.

Let us represent a rigid fiber by means of a unit vector p with its origin at the centroid
of the fiber which translates with the velocity of the fluid. Jeffery's equations state that the
orientation of the fiber varies with time according to the following evolution equation,

Pi = @ij pj + A [dij pj - dit p prpil 5)
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and A is a geometrical factor which vanishes for a spherical particle and takes the unit value

for a very long fiber.

In the present work, we will be concerned with fiber orientation in planar facets, and
we will assume that the fibers are contained in the facets. We may thus limit ourselves to the
planar equivalent of (5). Let (x,y) denote a set of local Cartesian coordinates in the plane,
(u,v) the velocity components, and ¢ the angle between the fiber and the x-axis. Equation

(5) then becomes
e 1,0v du 1 0v du 1 Ou dvy .
o= 3 (g . a—y)+ 9"[5 (a—x + g cos2¢ - 3 (a—x ; g) sm2¢] ’ )

where § is the material derivative given by
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Eq.(7) allows us to calculate the variation of the angle ¢ for a single fiber moving in
the mid-plane of the facet [8]. However, it is also possible to consider (7) as a partial
differential equation for calculating an orientation field ¢ (x;y;t) [9]. Boundary conditions on
¢ are then imposed along a line crossing the characteristics. For injection molding

applications, the fiber orientation field is imposed at the gates.

The selection of ¢ as an orientation variable is appropriate for calculating the
evolution of the orientation of a fiber along its pathline. However, it is inappropriate for
calculating fields in molds where flow fronts are meeting behind obstacles or in the case of
multiple gates. Let us consider a simple example in Fig.1, where two flow fronts are
meeting while they originate from different gates. The true orientation of a fiber is defined
modulo T; two fibers with respective orientations ¢ and ¢+mn (integer m) are in fact parallel.
However, in a numerical calculation, we would obtain a discontinuity of the orientation field
at the weldline. The problem of multiple definition of the orientation can be solved by
selecting the variables S=sin2¢ and C=cos2¢ as representative of the fiber orientation. For
the situation of Fig.1, C and S would always be continuous at the weldline when the fibers
are parallel. On the basis of (7); it is easy to obtain partial differential equations governing
the evolution of C and S, i.e.

au du dv
—°S( XS[( )C(a_x§§) 3 R
®
§= c(‘”-a“) re [ )c-(a—“-i!) i
ox dy

Compatible values for C and S are imposed along a line crossing the characteristics. We will
explain in section 4 the numerical method which has been developed for integrating (9) on an
evolving flow domain.




23. Fiber orientation : orientation tensor

Apart from a number of inherent hypotheses, a difficulty with the use of Jeffery's
equation is that it does not predict the anisotropy of fiber orientation, unless one assigns a
number of different orientations along the inlet boundary [8]. The full information on
anisotropy would be given by a probability distribution function which, in planar flow,
would consist of a function ¥(4); for a given material point, the product ¥(¢) dé gives the
probability of finding a fiber with an orientation between ¢ and ¢+d¢. The calculation of the
function Y¥(9) itself throughout a flow domain is a formidable task; rather, one resorts to the
calculation of orientation tensors [2]. The second- and fourth-order orientation tensors are,
for example, defined by

2
ajj = f ¥(¢)pipj do,
0
(10)
2r
Qijkl = f F(®)pipjpxpr do,
0

where p; is the i-th component of p.

On the basis of the continuity condition for the distribution function and an equation
of state for the evolution of fiber orientation, it is in principle possible to obtain an equation
describing the change of orientation tensors. If one uses for example Jeffery's equation, one
finds that [2]

Qij = Wik Ckj - Ak Wkj + A(dik 0;j + ik dj - 20451 d) - (11)

The evolution equation for the second-order orientation tensor involves the fourth-order one,
while the evolution equation for the latter would involve the sixth-order tensor. It is thus
necessary to introduce a closure approximation if one wishes to calculate the distribution of
jj on the basis of a velocity field. In what follows, we will primarily use the simplest

closure approximation, i.e.

Qijkl = Qjj Okl (12)



Further discussion on the closure approximation may be found in [2,17].

The hypotheses underlying Eq.(11) are the same as those of Jeffery's equation, since
the latter has been used for obtaining (11). The first advantage of (11) is that it provides an
estimate of the orientation distribution instead of the orientation of a single fiber. The second
is that (11) has the form of an invariant equation of state which lays the background for
further development. Indeed, (11) and (12) may be written in the more general tensor form

a=A@.d . 13)

0. . ey
where g, is the corotational derivative of g defined by

0 *
A=q-QaA+aQ , (14)

and A is a tensor function of g and d. Eq.(13) is invariant upon rigid body motions. With
(11) and (12); the tensor function A is given by

A, d=Ada+ad-2r(ad al . (15)

It is clear however that other tensor functions can be introduced for calculating the
orientation tensor. Typically, on the basis of Folgar and Tucker's work [18], one obtains an
additional term for A(¢,d) which is also invariant upon rigid body motions. The continuum
mechanics approach of the evolution equation for the orientation tensor gives more freedom
with respect to the strong hypotheses (i.e. a single fiber in a Newtonian fluid) underlying
Jeffery's equation.

We note that Eq.(11) is hyperbolic; it requires an initial distribution in the flow
domain together with boundary conditions on a line crossing the characteristics of the first
order system (9); i.e. at the gates. For injection molding applications, we would for
example impose an isotropic fiber distribution at the gates.

3. Flow calculation

We wish to calculate fiber orientation over a domain which is evolving with time.
Fig.2a shows a typical planar problem : a rectangular plate is injected through a central gate




and two lateral ones. Fig.2a shows the successive flow fronts during the filling of the part.
In the early stage of the filling, we need to consider three separate flow domains which later
form two and then a single flow domain after Junction of the various fronts. In order to
calculate fiber orientation as a function of time, we need to cover the flow domain at every
time t with a finite element mesh. Let us briefly review the method which has been
developed on the basis of a pre-selected finite element mesh [11,12].

The flow domain of Fig.2a is covered by a finite element mesh of either quadrilateral
or triangular elements shown in Fig.2b. The time is discretized in terms of a number of
finite intervals; let t, denote an intermediate time at which we describe the iterative
procedure. At time ty, let us consider in Fig.2c the boundary of the flow domain which
presently consists of two separate closed curves. Such boundaries allow us to separate the
finite elements of the initial mesh into three classes : i. the elements behind the flow front
which are fully filled with fluid; ii. the elements outside the flow domain which are empty;
iii. the elements which are partially filled.

Our procedure consists of first preserving the elements of the first class which cover
most of the flow domain, thus ensuring without difficulty a well designed mesh. Next, we
need to draw a finite element mesh in the region lying between the flow front and the filled
elements. For that region, we use a fully automatic mesh generator which links existing
nodes with those identifying the flow front. The final mesh generated for the situation of
Fig.2c is shown in Fig.2d. The procedure is valid for flat as well as three-dimensional
surfaces; several examples will be shown in later sections. Despite its apparent simplicity,
the automatic generation of finite element meshes at every time step requires a very complex
algorithm if one wishes to generate meshes for the filling of molds of arbitrary geometry and
with an arbitrary gate distribution. A detailed description of the algorithm is available in
[19].

Let Qp denote the flow domain at time tn, and let Q: denote the corresponding finite

element mesh. In the present Paper, we limit ourselves to isothermal flow, although the
method has been extended to non-isothermal flow [13]. The primitive variable is the
pressure, with nodal values P'll at the nodes of Q:;. The discretized system for calculating the

P'i"s is obtained by applying Galerkin's method to (3) (see e.g.[13] or [15]). For a

Newtonian fluid, the discretized system is linear while an iterative procedure is necessary for
generalized Newtonian flow. We use for the pressure a P2-C0 representation.




On the basis of (1) and (4); it is then possible to calculate the velocity field in the mid-
surface within Q: which is however discontinuous at element boundaries. Along the flow

front, a continuous representation of the velocity field is obtained by means of a consistent
method. Such a continuous representation is required for calculating the motion of the
boundary from time t to ty4] = ty + At, and for defining the domain Q2 ;

n+1°

In later sections, we will assume that we have calculated a sequence of finite element
meshes Q: on which we know the discretized pressure field and the corresponding

(discontinuous) velocity field. For three-dimensional domains, described by a set of plane
facets, Q: consists of a set of plane meshes, with compatible finite element distributions

along the edges. In Fig.3a we show a set of boundary lines on a wind-breaker described by
a three-dimensional surface. Fig.3b shows the initial mesh covering the whole domain
while Fig.3c shows an intermediate mesh.

4. Numerical integration of Jeffery's equation
4.1. Method of weighted residuals

Let us now return to Eq.(9) which we wish to integrate over a flow domain which is
evolving with time, as described in section 3. The primitive variables for describing the
orientation are the functions C and S which are represented by means of a P1-CO
interpolation over Q:, ie.

C=ZvyCi( ,
(16)
S=XvyiSit) ,

where Cj, S are nodal values which depend upon time while the j's are shape functions.
In order to transform the system (9) into a set of ordinary differential equations, we first
apply the method of weighted residuals; for a set of weighting functions Wj we write

dC oC oC ov du
Wil—+—u+—v+S(—-—
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while a similar integration is performed on the second equation (9).

The structure of Eq.(17) results in a difficulty which is inherent to the flow
calculation of section 3. We have shown that the velocity field is calculated from the
pressure which has a continuous finite element representation. The calculated velocity field
is therefore discontinuous, and its first derivatives appearing in (17) do not exist. A way of
solving the problem is to calculate on Q: a smoothed velocity field by means of a least

square procedure which would however be very expensive, since it requires the solution of
two large linear systems at every time step. A cheaper and easy approach is to perform an
integration by parts on every term containin g velocity gradients, and to calculate the resultin g
boundary integrals. Typically we have

ov d
Jh W;SC gdﬂ= f [%(WiSCV)-Vg(WiSC)]d-Q
v Q)

n

(18)

v% WSO dQ + J nx v W;S C doQ.
h

Q" 2"

In order to select an appropriate weighting function for integrating (18); it is
interesting to consider a very simple problem schematized in Fig.4. In a rectangular plate
filled with fluid, we consider a vertical uniform velocity field. In the initial configuration,
we consider a uniform orientation field with ¢=n/4. However we modify the orientation in
the entry section, and impose a value of -7/4. The exact solution of the problem would
show the motion of the discontinuity with the uniform velocity of the fluid. The discretized
solution is of course unable to predict a discontinuous field, which is necessarily smoothed.
Applying Galerkin's formulation, we select weighting functions W; identical to the shape
functions y; in (16). The orientation as a function of coordinate y for various instants is
shown in Fig.5a. We find the expected result that Galerkin's method applied to a hyperbolic
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problem generates spatial oscillations in the presence of high gradients. We thus resort to an
upwinding scheme. The streamline-upwind Petrov-Galerkin (SUPG) scheme [20] would be
ideal if the velocity field were continuous. However, the discontinuous nature of the
discretized velocity field forces us to calculate derivatives of the weighting functions Wi ; we
are thus not allowed to introduce discontinuous weighting functions which are proper to the
SUPG scheme. We resort to a non-consistent streamline-upwind (SU) scheme, in which
the modified weighting function is only applied to the advective terms in (9). The evolving
orientation field based on SU is shown in Fig.5b, where we find that the wiggles of Fig.5a
have disappeared, although artificial smocthing has been introduced in the solution. For
technical details on the application of streamline-upwinding, the reader is referred to [20].

4 2. Time integration

Let us assume that, at time tp, we know the orientation represented by Cq and Sq
over the domain Q:. The sieps of the time integration are as follows :

i. On the basis of the discretized pressure field Py on Qﬁ, calculate on {22 a provisional

orientation field at time tp, = t, + At, denoted by C* and S*.
ii. Similarly, on the basis of Py, calculate the new flow front and create Qngl by means of

the remeshing technique explained in section 3.
iii. Interpolate or extrapolate the orientation field C*, S* from Q:: to in:l, in order to

obtain Cn+1 and Sn+] 5
iv. Calculate a new pressure field Ppy1 On Qntl.

For calculating C* and S*, we use the fourth order Runge-Kutta algorithm. The
selection of the time step is based on Courant's criterion

At<t/lvl (19)
where h represenis the size of an element and |v| the norm of the velocity.

Let us explain in some detail the calculation of Cp41 and Sp41 over Qn'll. Fig.6a

shows the superposition of Q: and Qntl. We start with the calculation of an intermediate

orientation field C* and S* over Q:; next, we need to evaluate Cpy1 and Sp+1 on Qn:‘-l on
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the basis of C* and S*. The finite element meshes Q: and Qntl may differ in two respects :
i. Qn:l-l covers in general a domain larger than ﬁ:; ii. even on the common region, the finite

elements may be different in view of the remeshing procedure. The adopted procedure
consists of evaluating Cpy; and Sn+1 by means of a least square criterion, i.e. the
minimization of the integral

I= f (Cp+1 - C*)2dQ (20)
Q h

n+l

and a similar expression for S. In view of (16); the minimum of I in (20) is obtained when,
for node i, we have

J Vi Cns1dQ = J vy C*dQ . (21)

h h
Q n+l1 Q n+1

The evaluation of the left-hand side in (21) follows a standard procedure. The
integral on the right hand side is calculated by means of a numerical quadrature over the
elements of anl‘ Let wy41 be such an element; we write

f yi C* dQ =)E Vi (xk) C*(xy) Lk, (22)

Wn4]

where xy refers to the numerical integration point and { is the corresponding weight. There
are now two possibilities :

i.xg e Q:. The value of C*(xy) may then be easily calculated.

i xg & Qg. The value of C*(xy) is then calculated by means of an analytical continuation.

The procedure is schematized in Fig.6a. One calculates the normal from Xk to the boundary
of fz: Let x* denote the intersection between the normal and Q:, we write %
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C*(xg) = C*(x*) + VC*(x*) o (xg - X*) . (23)
A similar procedure applies for calculating S*.

There are circumstances, as shown in Fig.6b, where xi corresponds to more than
one point on the boundary of Q:; it is the case in particular when two or more flow fronts

meet for forming a weldline. The value of C*(xy) is then calculated by an averaging
procedure. The averaging between moving flow fronts is precisely the reason why we need
to represent the orientation by means of C and S; if we were using the orientation angle ¢, an
interpolation between ¢ and (¢+%) would give us a value of ¢+7/2, although the fibers have
the same orientation on both fronts.

4.3. Flow around folds

A difficult problem occurs when the flow front crosses a fold between planar facets.
When the length of the fibers is larger than the thickness of the mold, it is clear that the fold
would have a dominant effect on the orientation of a fiber. We assume that the fibers are
short enough so that their orientation with respect to the direction of the edge is preserved
when the flow front passes the fold. Typically, let us consider in Fig.7 a rectangular plate
injected from one end and a plate of the same size bent in four planar facets. The assumption
is that the final state of orientation in the bent plate is the same as in the flat plate. Let ¢
denote the orientation in a facet with coordinates x,y, while ¢',x',y' are the corresponding
quantities in an adjacent facet (Fig.8). Let o denote the angle between 0'x' and Ox. Across

the fold, we impose
o=¢' + a. (24)
4.4. Anisotropic state of orientation

One of the objectives of the numerical simulation is to predict the anisotropy of the
mechanical properties of the molded part in view of a preferred fiber orientation. In order to
achieve that goal, we solve several problems with different orientations at the gates. In most
examples, we found that all fibers would soon align in essentially the same orientation.

In a given Cartesian coordinate system, it is easy to calculate an orientation tensor on
the basis of the quantities C and S. Indeed, the x- and y- components of p are cos¢ and
sin¢; in view of the definition (10) we have

A=



1t

a11=<cos2¢>=%(l +<C>),

ap =1-ayy, (25)
a12=<cos¢sin¢>=l<8>,

where the brackets denote the average. Calculating the fields C and S on the basis of several
initial orientations, we may thus obtain an estimate of aij through an averaging process.

5. Numerical calculation of the orientation tensor

In the present section, we wish to explain the numerical integration of (5) over a
moving domain during injection molding. Many of the features of the algorithm are similar
to those of section 4; we will thus necessarily be brief.

5.1. Method of weighted residuals

We wish to calculate the orientation tensor ajj defined by (10) while the evolution
equation is given by (11). We know at the outset that ajj is symmetric, has a unit trace and
is positive definite. Its eigenvalues A are such that 0 < A < 1. The primitive variables for
describing the orientation are the functions a1 and a2 which are represented by means of a

P1-CO interpolation over Q:, ie.

a1 =Z i alil ®,
. (26)
an=Eyia,®.

In order to obtain ordinary differential equations in terms of alil (t) and ozli2 (t); we apply the

method of weighted residuals, as in (17), to the orientation equation (11). In order to easily
consider various types of closure approximations, we introduce them at the discrete level.
More precisely, we select for Qijk] a representation of the type

%k = Z Ym o 27)

the nodal values of Qijki are thus related to the nodal values of ajj. The quadratic closure

approximation (12) then becomes




aijt = £ Ymal o) (28)
instead of
ikl = € ¥mof) Cnoy) - 29)

Both versions have the same nodal values and converge when the size of the elements
decreases.

The problems encountered in section 4.1 with the derivatives of the velocity field and
the need for an upwinding scheme are similar when one calculates the orientation tensor; we
perform again an integration by parts and apply a streamline upwinding technique.

5.2. Time integration

The time integration described in section 4.2 applies to the calculation of ajj. In
particular, we use a fourth-order Runge-Kutta algorithm for calculating the orientation a; at

time tp4] ON Q:. An analytic continuation is also used for extrapolating the orientation from
h h
Qn to le.

5.3. Flow around folds

When the flow front crosses a fold, we apply the same ideas as in section 4.3.
Returning to Fig.8, let Bjj denote the matrix of director cosines of the (x',y") axes with

respect to (x,y). Let aij, aij denote the orientation tensor on both sides of the edge. The

continuity condition states that, at the edge,
a;; = Bix Bjt ¢ - (30)

5.4. Stability control

It is found that, in many flows, the anisotropy becomes highly pronounced, with one
of the eigenvalues of the orientation tensor being very close to one. In the extrapolation
procedure from Q: to inll as described in section 4.2, it may happen that one of the

eigenvalues becomes larger than one; such a process is often followed by an instability of the

S




numerical scheme. It is then necessary to adjust the extrapolated matrix in order to preserve
its unit trace and its positiveness while maintaining the eigenvectors of the orientation tensor.

» . .
Let aij denote the extrapolated orientation tensor, which has an eigenvalue (1+¢)

while the other is (-€). We substitute for ai; a tensor ajj defined as follows,
*®
ajj=7aij+B5ij s (31)

where yand B are scalars and 8ij is the unit tensor. The preservation of a unit trace imposes
that

Y+2B=1 . 32)
The eigenvalues A of Qijj are related to those of ai: by

A=B+yA* | (33)
When an eigenvalue of a; equals (-€) < 0, we obtain an admissible tensor ajj by selecting
Y=»A+2e)yl |, B=g(142¢)-1 . (34)

A control of the size of the eigenvalues is systematically applied after every
extrapolation from Q" to Qb .
n n+1

In order to show the anisotropy of the fiber orientation field, we calculate the
eigenvectors of @jj and plot their size and orientation over the flow domain.

6. Numerical tests

either a fiber orientation based on Jeffery's equation or an orientation tensor are essentially
the same. In the present section, we wish to analyze a number of features based on the
prediction of the orientation tensor. In section 7, we will compare results obtained with both
approaches. We have assumed in all the examples below that the fluid is Newtonian and
isothermal, ;
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6.1. Convergence test

Let us return to the problem of Fig.2. We assume that, at the gates, we inject fibers
with an isotropic orientation, i.e. 11 = 22 = 0.5, a12 = 0. The aspect ratio of the fibers is
2; we select on purpose a low value in order to delay the development of the anisotropic
orientation. We have performed the calculations on three finite element meshes which
contain respectively 276, 622 and 1462 elements. They are shown in Fig.9; we find that the
size h of an element has been respectively divided by 2 and by 4. The succesive flow fronts
have been shown in Fig.2a. Fig.10 shows the map of the eigenvectors of the orientation
tensor over the whole domain with the coarsest and the finest mesh. The correspondence is
obviously good; we note in particular the changes of orientation which occur at the weldlines
due to the separate gates. For a quantitative comparison, we show in Fig.9 a horizontal and
a vertical cross-section along which we evaluate the components o11 and 12 of the
orientation tensor. The results are shown in Fig.11. We find some difference between the
first and the second mesh on the horizontal cross-section, while the second and the third
mesh give essentially the same results. Differences may be found in the upper right corner
where the finest mesh allows for a precise calculation of the velocity field at the last filling
stage. The results obtained on the vertical cross-section are essentially the same.

6.2. Dependence on initial conditions

In Fig.12, we show a finite element mesh (a) and the successive flow fronts (b) for
the filling of a podium with a square hole. We have calculated the orientation tensor with an
aspect ratio of 200 with two different orientations at the gates. In Fig.12c, the eigenvalues
are equal at the gate and correspond to an isotropic distribution. In Fig.12d, the fibers are all
oriented in the same direction. The plots of the eigenvectors show that it takes a very short
distance for the fibers in both cases to align in the same direction; the initial state of
orientation has little impact upon the final configuration.

6.3. Closure approximation

In the results shown above, we have used the quadratic closure approximation given
by (12). There are other types of closure approximations; for example, the linear closure
approximation given in [2] is better for a completely random distribution of orientation,
while the quadratic one is exact for a uniaxial alignment. A hybrid closure approximation
given in [2] mixes the quadratic and linear closures for covering a wider range of orientation

) _ ’



states. In Fig.13, we show the finite element mesh covering a mold (a); the successive flow
fronts (b); and the orientation obtained with the Quadratic closure (c) and an aspect ratio of 2.
The orientation state obtained with the hybrid closure is essentially similar. For a
quantitative comparison, we have drawn in Fig.13d a straight line crossing the flow domain.
In fig.14, we plot the value of @11 as a function of an abscissa along that line for both
closures. We find that the resulting orientation is the same except in a small region where
the fibers are reorienting near the weldline. In our injection molding applications, the type of
closure approximation seems to have little impact over the final state of orientation. This is
due to the fact that the orientation alignment (due to the use of Jeffery's model) is high in the
present geometrical configurations.

7. Examples

In the present section, we show two examples together with a comparison between
Jeffery's orientation and the orientation tensor, with the same aspect ratio.

7.1. Filling of a dashboard

In Fig.15, we show the finite element mesh (a) and the flow fronts (b) for a part with
four holes and two gates. The filling is characterized by several weldlines appearing behind
the obstacles and at the Junction of the flows coming from the separate gates. We have filled
the mold with fibers of an aspect ratio of 2. Fig.16a shows the eigenvectors of the
orientation tensor obtained on the basis of (11); while Fig.16b shows the average orientation
of fibers based on Jeffery's equation with three different initial orientations. We expect both
orientation tensors to be the same provided enough discrete initial orientations are considered
at the outset. It is interesting to observe that in the present problem the orientation states
obtained with both approaches are essentially similar, although we have only used three
initial orientations for Jeffery's law. One should note the complex state of orientation alon g
the weldlines behind the obstacles.

7.2. Filling of a windbreaker

In order to show a three-dimensional example, we return to the wind-breaker of
Fig.3 on which we have again calculated the fiber orientation with both approaches. Fig.17a
shows the eigenvalues of the orientation tensor with an aspect ratio of 100, while Fig.17b
shows the corresponding figure with Jeffery's equation. Again, the results are essentially
the same despite the small number of initial orientations.



It is found that the fibers are quickly aligned in the extensional direction of the flow,
i.e. along the flow fronts, and that the edges do not modify the orientation, as expected from
the hypotheses of sections 4.3 and 5.3.

8. Conclusions

We have shown that the calculation of fiber orientation, both by means of Jeffery's
equation and an orientation tensor, can be coupled with the time-dependent calculation of
injection molding, in plane and spatial geometries. Both approaches give essentially the
same results with only three initial orientations for Jeffery's equation. We have shown that
the final state of orientation shows little dependence upon the orientation at the gate .
Although we have on purpose limited our developments to a Newtonian filling of the mold,
the method is applicable as well to generalized Newtonian fluids although the validity of the
orientation law may need to be modified. In theory, the validity of the present calculations is
limited to dilute fiber solutions. High volume fractions would require a modified orientation
law while the effect of volume fraction on velocity profile in the mold should be taken into
account. Still, the present approach is helpful for a better understanding of fiber orientation
together with a qualitative prediction of the orientation state.
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Captions for figures

Fig.1. Formation of a weldline in a flow originating from two distinct gates.

Fig.2. a. Successive flow fronts for the filling of a rectangular part through two lateral gates
and a central one; b. initial finite element mesh; c. definition of the flow domain; d. finite
element mesh covering the flow domain.

Fig.3. a. Successive flow fronts for the filling of a wind-breaker; b. initial finite element
mesh; c. intermediate finite element mesh.

Fig.4. Uniform flow through a rectangular domain. A discontinuity in fiber orientation is
propagated from the entry to the exit section.

Fig.5. Fiber orientation at various values of time along the vertical line AB in Fig.4; a.
Galerkin method; b. Streamline-upwind method.

Fig.6. Extrapolation technique for calculating fiber orientation at time tp41; a. single flow
front; b. two flow fronts move for forming a weldline.

Fig.7. Flow in a plane mold and in a folded mold.

Fig.8. Calculation of the change of orientation across folds.

Fig.9. Three finite element meshes for the problem of Fig.2 containing respectively a. 276
elements, b. 622 elements, c. 1462 elements.

Fig.10. Eigenvectors of the orientation tensor based on mesh a and mesh c of Fig.9.

Fig.11. Components o) and o2 of the orientation tensor plotted along the lines AB and
CD shown in Fig.9 for finite element meshes a(—); b(---) and ¢ (- — e+ —).

Fig.12. Filling of a podium with a square hole : a. initial finite element mesh; b. successive
flow fronts; c.d, fiber orientations corresponding to different initial conditions.

Fig.13. a. Initial finite element mesh; b. successive flow fronts; c. eigenvectors of the
orientation tensor; ¢. cross section used in Fig.14.

Fig.14. Orientation component o1 along the cross-section of Fig.13 for the quadratic
closure (—) and the hybrid closure (- ).

Fig.15. Filling of a dashboard with two gates : a. finite element mesh; b. successive flow

*

fronts.

Fig.16. Fiber orientation distribution corresponding to the orientation tensor calculation (a)
and Jeffery's law with three initial directions (b).

Fig.17. Fiber orientation in the wind-breaker of Fig.3 corresponding to the orientation

tensor calculation (a) and Jeffery's law (b).
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Fig.1. Formation of a weldline in a flow originating from two distinct gates.




Fig.2. a. Successive flow fronts for the filling of a rectangular part through two lateral gates
and a central one; b. initial finite element mesh; c. definition of the flow domain; d. finite
element mesh covering the flow domain.
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Fig.3. a. Successive flow fronts for the filling of a wind-breaker; b. initial finite element
mesh; ¢. intermediate finite element mesh.
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Fig.6. Extrapolation technique for calculating fiber orientation at time tp41; a. single flow

front; b. two flow fronts move for forming a weldline.
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Fig.7. Flow in a plane mold and in a folded mold.
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Fig.8. Calculation of the change of orientation across folds.
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Fig.9. Three finite element meshes for the problem of Fig.2 containing respectively a. 276
clements, b. 622 elements, c. 1462 elements. S
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Fig.11. Components o} and @12 of the orientation tensor plotted along the lines AB and
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Fig.15. Filling of a dashboard with two gates : a. finite element mesh; b. successive flow
fronts.




Fig.16. Fiber orientation distribution corresponding to the orientation tensor calculation (a)
and Jeffery's law with three initial directions (b).




Fig.17. Fiber orientation in the wind-breaker of Fig.3 corresponding to the orientation tensor
calculation (a) and Jeffery's law (b).



