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1. Introduction

In the continuum theory of fibre-reinforced materials the constraint of inextensibility in
the fibre direction imposes a severe limitation on the admissible deformations. Spencer [1]
considered a material reinforced by two families of straight parallel fibres initially inclined
at an angle 2¢ to each other. He showed that in axial compression normal to the plane of
the fibres, the fibres rotate until they are orthogonal whereupon no further contraction can
take place. Thus there is a finite limit to the amount of contraction that can take place
normal to the plane of the fibres and no contraction at all can take place if the fibres are
initially orthogonal.

Many composites are made up of layers (plies) in which each ply consists of a single
family of fibres and the fibre directions in alternate plies are inclined at an angle of 2¢ to
each other. Since the plies are thin the two family system could be thought of as a suitable
model and the above deformation relevant. This was confirmed in an experiment carried
out by Cogswell [2] who considered a stack of eleven plies, in the form of rhombi, in which
fibres in alternate layers were initially inclined at 45° to each other. He found that under
compression the angle tended towards 90°.

In the present paper we present experimental results which extend the work of Cogswell
using a fibre-reinforced composite in which the matrix (Golden Syrup) is liquid at room
temperature. We also consider the theoretical model to take into account the interface
conditions between the plies and between the plies and any resin-rich interply regions.

2. Experiment

The experiments were carried out using a model composite system consisting of carbon-
fibre impregnated Golden Syrup supplied by ICI. This model composite has been shown [3]
to have similar properties at room temperature to fibre-reinforced thermoplastics at their
melt temperatures. Plies were cut into the shape of a rhombus of side 5cm and included
angle 45° and laid up to form an N layer diamond such that the fibres in alternate layers

were at i22%° to the axis through the points A, B (Fig 1).

The resulting laminate was compressed between two parallel perspex plates using a
press. The experiment was carried out for different values of N. On removal from the
press it was observed, in all cases, that the initial rhombus shape had tended towards a
square with a shortening of the distance AB and an extension of CD. For instance, for
N =5, the length AB had contracted from its initial value of 9.3cm to 8.1cm and CD had
increased from 3.8cm to 6.3cm. These observations are in agreement with those of Cogswell
[2] who conducted a single experiment, on APC — 2 with 11 plies. There was also evidence
of transverse flow normal to the fibres.
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The matrix was fluid at room temperature and so it was possible to peel the plies apart
after removal from the press and record the angle ¢ between the axis AB and the fibre

direction in each ply. These an
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[t is seen that the greatest rotation occurs in the centre plies and that the plies adjacent
to the plates undergo little rotation. Some transverse flow normal to the fibre direction also
took place.

A second series of experiments was carried out in which a thin layer of the Golden
Syrup matrix was introduced between each ply and between the plies and the plates. After
compression the structure was examined and the angle ¢ measured for each ply as before.
The results were as follows:

INF=t2 44°  45°

N=3 44°  45° 44°

N=4 44° 45° 45° 43°

N =38 40° 45° 45° 45° 45° 45° 45° 40°

It is seen that the effect of introducing the viscous layer is to enhance the rotation. In
the case of two plies it could be seen, through the perspex plates, that the deformation
consisted of an initial rotation of the fibres until a square shape was formed followed by
lateral spreading normal to the sides of the square. Further compression resulted in the
phenomena of ‘barrelling’ and ‘jetting’ which have also been observed for APC — 2 under
high pressures [4]. This deformation sequence is illustrated in Fig 2.
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The enhancement of the rotation and the subsequent transverse flow suggested that
the introduction of a resin rich layer could induce an extensional flow which might have
beneficial effects in a manufacturing process. Two rectangular samples were made in which
the fibres were given a wave form and subjected to normal pressure. In one case resin-rich
layers were introduced between the sample and the plates and it was seen that the fibres
initially straightened before a transverse flow took place. In the non-lubricated case the
fibres remained wavy in form.

3. Theoretical Model

We consider the composite to be modelled as a stack of N layers contained between
parallel plates which approach each other with a speed V. Cartesian axes are chosen with
the z,—axis normal to the plates and the fibres in each ply are assumed to lie in planes
normal to the z,—axis. We allow the possibility that the plies are separated by resin-rich
layers. The configuration is illustrated in Fig 1.

The normal motion of the plates will induce velocity and stress fields in each layer
which in general will be functions of position and time. The problem is one of finding a
velocity distribution that satisfies the constitutive equations and the equations of motion
in each layer together with the interface conditions between the layers. The latter requires
continuity of velocity and continuity of shear and normal stress. There will also be edge
conditions which we take to be zero in-plane shear stress and a global equilibrium condition
on the normal stress.

3.1 Constitutive Equations
Plies

The plies are modelled as a highly anisotropic viscous fluid [5]. The material is not
only incompressible but inextensible in the fibre direction. The local fibre direction at any

point is denoted by a unit vector a with components a,(i: = 1,2,3) where a;a; = 1.
Inextensibility in the fibre direction imposes the constraint
Ov,
a;d;5— = 0, (1)
Oz
3
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where v; are the components of the velocity vector v , and it can also be shown [1] that
the material time derivative of @ has components

a. =a .%. (2)
i I 0z p
Incompressibility imposes the constraint
=g 3
Oz, ’

We adopt the model employed by Rogers [6] in which the stress components o,; are related
to the rate-of-strain d, ;(= 3(0v;/0z j T 0v;/0z,))through the relationship

0ij = —=PS;; + Ta,a; + 2npd;; + 2(n, —n,)(a,a,dy; + aja,d,), (4)

where p is the pressure, T is an arbitrary tension arising from the constraint of inextensi-
bility, and M., N, are the shear viscosities along and transverse to the fibre directions.

Resin layers
The resin layers are modelled as incompressible viscous fluids of constant viscosity n
for which
0;; = —pé;; + 2nd,;. (5)

3.2 Equations of Motion

We assume that both the resin layers and the plies are sufficiently viscous and that the
flow is sufficiently slow for inertia to be neglected. The stress equations of motion are then

9o, ; )
The motion is therefore quasi-static with time entering only through the boundary condi-
tions. We seek solutions for which the interfaces between the layers remain plane for all
times and in which the fibres in any one ply remain straight and parallel in planes normal
to the z;—axis. In the present paper we limit our attention to two basic flows of this type,
uniform extensional flows and squeezing flows.

3.3 Uniform Extensional Flows

This deformation has been considered in some detail by Spencer [1] for the homogeneous
case with both one and two families of fibres. The trivial extension to the layered system
is included here since it demonstrates a mechanism for the rotation that may be valid far
from the boundaries. Conside; a deformation in which the velocity distribution in the jth
layer is of the form v,(’) = 75’)1:,-, (¢ = 1,2,3), where the v?) are functions of time. On
()

1

every interface, z, = ¢gU)(¢ , the velocity must be continuous and it follows that the 07
y 3 B

must be the same for each layer and we can write 7,(1 ) = Y -
Plies

We suppose that the plies in alternate layers are inclined at an angle 26 and choose
the z,—axis to bisect this angle. Then in any ply the vector @ = (cos, +siné, 0) and
equations (3), (1) and (2) give

Y1+ + 7 =0, 7, cos® 8 + 4, sin? 8 = 0, 7
—sin#f = 4, cos ¥, cos 80 = v, sin 6.
It follows that .
6 = —v; tan 26. (8)
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The components of stress are, from (4),
o, =—p; + Tcos’ 8+ 21, v, +4(n, —n.)M cos? 8,
013 =0, 053 = 0, o033 = —Pp; +277T'73a
Oy = —p; + Tsin® 6 + 20,7, +4(n, —n. )72 sin? 4,

09 = +[3T + (1, = 17)(71 + 72)]sin 26
) where p; is the pressure in the j-th layer.
1 Resin
The components of the stress in any resin layer are from (5):
01y = —Pi + 2171, Tp = —Py + 207y, O3 = —Pp T 20735 013 =0, 013 =10, 093 =0,
where p, is the pressure in the k-th layer.

Both of these stress fields satisfy the equations of motion (6) identically. At any interface
we require continuity of the stress components o,;, 0,3 and oy3. It is clear that this can
always be accomplished by a suitable choice of the pressures p;, p;. In a compressive flow

n v; < 0, and it follows from (7) and (8) that if  is initially less than = /4 it will increase
_ to m/4 where v, must be zero, and no further contraction can take place. Since the ¥; do
) not depend on z, the positions of the interfaces are arbitrary, and we cannot satisfy the
boundary and edge conditions so that the deformation can only be expected to hold, if at
all, far from the boundaries. It is perhaps significant that in the experiments the greatest
1€ rotation occurred in the centre plies. It is also noteworthy that in the experiments the
28 material did not ‘lock’ and subsequent to the rotation transverse flow did take place.
3.4 Squeezing flows

6) In the experiments it was observed that in addition to the fibre rotation there was also
some transverse flow normal to the fibres. In the case of the lubricated samples there was
li- an initial rotation until the fibres were orthogonal followed by a transverse flow. Such a
all deformation is not allowed under the uniform extension considered above. It is of interest
al therefore to consider the deformation.that takes place when the plies in alternate layers are
e, orthogonal. As before we allow the possibility of inter-ply resin-rich layers.
Plies
The squeezing flow of a single ply between parallel plates has been considered by Rogers
us (6] and Balasubramanyam et al {7] and we shall make use of these solutions in what follows;
m the reader is referred to the original papers for the details. Consider a single ply in which
far the fibres are initially straight and parallel to the z,-axis. It has been shown that a possible
th velocity field is v; = —f'(z3,1)z,, vy, =0, vy = f(z;,t) Where a dash indicates differentia-
On tion with respect to z;. It follows from (2) that a; = 0; that is, the fibres remain straight
(9 and parallel to the z,—axis. The components of stress are, using (4),
oy ==p—20.f, 0y =—P+T, 033 =—p+ 2, f', o3 = 2, f" 0gy =05 =0
The equations of motion then become
OSS Op 0 Op
Rl vt T "t =" . T =0 e M " . 9
Oz, e 6:):2( i D med: Oz, 23 (9)
For consistency
(7 f = Az} + Bz2 + Cz, + D, (10)
where the coefficients are functions of time, and
(8) P="py +nT{3Ax§ + 2Bz, + C — 3Az2} + g(x,, ), (11)
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where p, is an arbitrary function of time and ¢ is an arbitrary function of z, and t. The
presence of the function g is due to the fact that in the second of the equations in (9) only
the combination (—p+T) arises, so we may add on to p any function of z, and t provided
we subtract it from T. This point has not been considered in previus work but it has the
important consequence that if any resin flow in the z,—direction creates a tension that
depends on z,, it will affect the pressure and hence any calculation relating to the normal
load on the plates. For the present work this additional function is essential when we come
to the interface conditions.

3.5 Example 1 - two plies (0 — 90° lay-up)

In order to illustrate the interface conditions it is useful to consider the case of two plies

in a 0-90° lay-up with no resin-rich interply regions. The configuration is illustrated in
Fig 3:
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FIG 3.

We choose an origin in the interface which is taken to be at rest and the top and bottom
plates approach with speeds V, and V, respectively. Using the above solution we have for
layer 1:

1 1 1
o) = ~fi(z)ey, vy =0, oY = fi(z), (12)

where f, = A,z + B,22 + C,z; + D, . The boundary conditions on the top plate require:

vil) =0, vgl) =-V, on z;=4H,. (13)
For layer 2,
i =0, oY =—fi(zy)y, v? = flzy), (14)
where
f= Az”g + B2z§ + Cyz3 + Dy,
and

vgz) =0, v§2) =V, on z,=-H,.
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Interface conditions
On the interface, Ty = O’ we require:

(a) Continuity of velocity, i.e.
vil) = vﬁ"” = 0 which implies C; =0,
v{? = v{" = 0 which implies C, =0, (15)
v{") = v{¥) = 0 which implies D, = D, = 0.

(b) Continuity of normal stress o,,, €.

1
_Pg ! + T]T3A1x212 —gy(zp,t) = _p(()2) h T]T3A2:l:§ — g,(zy, 1), (16)

and we see that we must choose

95 "7713‘42“3 and g, = _TIT3A11'§-

(c) Continuity of shear stress

(1) (2) (1) (2)

013 =033, O =03, on z3=0. (17)
Now agll) = —n,B,z, and ag) =0, so either B; = 0 or we must allow a discontinuity
in the shear stress. Similarly ag) = ag) implies either B, = 0 or that there is a

discontinuity in the shear stress. If B, = B, = 0 then it follows from the boundary
conditions (13) and (14) that V; = V, = 0 and no flow is possible. However, for region
(2), consider the fibres at the interface, these have zero shear stress on them from below

and a constant shear stress ag) from above. We may write
(2) (1)
031 = o031 (0)(1 — H(z,)),
where H(z,) is the unit step function. The stress equations of motion require
(2) (2)
913 + 913
Oz, Oz,

=10,
which integrate to give
Bin
2
ofp = ——5 (=} — LD(zy),

where §(z,) is the Dirac delta function. Thus the tensile stress becomes infinite in the
} boundary fibres which carry a finite force F, = —n_B,(z} — L})/2. This is an example
of a singular fibre which have been examined in some detail in the literature for fibre
reinforced solids [8]. Note that the interface is plane so that there is no singularity in

the pressure. In a similar manner we can see that for region 1, z; > 0, the shear stress

agg) is discontinuous and the boundary fibres carry a finite force —n,_B,(z; — L2

Thus the inextensibility of the fibres and their ability to carry a finite force ensures
that condition (17) is satisfied.

I i .



Edge conditions

Zero traction on the two edges perpendicular to the fibre direction requires
crg) =0 on =z, ==+L,.
ag) =0 on z,==%L,.

Global equilibrium of the edge region is satisfied if

L, Hy L, 0
/ / 0'511) dzydz, =0 and / / ag) dz.dzy =0;
~Ly JO Ty==+L, -L, J-H, zo=+L,
These relate the two pressures pgl) and p(()z) to the A’s and B’s:

1

P(() ) = 377T[(A1 it %A2)L? o (AlHl2 it BlHl)]7 (18)
2

Pr(> ) = 377T [(Az il %A1)L§ = (“12H22 + B,H,)]. (19)

The set of algebraic equations (13)-(19) for the A’s and B’s can now be solved to give

Uy =6 =g f}f 1 1, Vg =0, v:(3 =13 Hlf' 3,
6V. V,z2(2z, + 3H.
052) =0, v£2) = _F:?xs(xs + H,)z,, v:(32) = -2 i H33 2)
2 2

where
 _ Vi(6L3 +3H? — 2L} A}
2 Hf(GLf + 3H2 - 2L§) ]

This solution is of interest in that a plane interface is possible. This is not the case
for two Newtonian fluids where the interface and edge conditions can only be satisfied
approximately if further assumptions such as the lubrication approximation are made.

3.6 Example 2 - five lavers

We now extend the above analysis to the case where resin rich layers exist between
the plies and between the plies and the plates. We also assume a constant load F on
the top and bottom plates so that V, H,, H, and H, are functions of time to be

determined. The configuration is one of five layers as depicted in Fig 4.

For simplicity we assume that the layers are square in section so that —L < Tipes
L, (+ = 1,2), with the interfaces at z, = +H,, z, = +H, and the boundaries at
T3 = £H;. In each of the resin layers, i.e. layers 1, 3, 5, we assume a velocity field of
the form

= =gt 2~ 0 3, v = —gfe, — gV ay, o = o) 467, (1=1,2,3)

where the g's are functions of z, and time and a dash denotes differentiation with
respect to ;. These satisfy continuity and from the equations of motion for each layer
it can be deduced that

o) = ala 6+ elfey 44D, (1= 185N = 1,2,0,0),

8
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The velocity fields in the two plies have the same form as in the previous example, i.e.

2 2) 2 2 2
vg ) = —gg ) Ty, vg ) = 0, U:(; ) = gg ),
4 4 4)’ 4 4
vg ) = 0, vg ) = —gg ) Ts, vg ) = gg ),

where

g0 = a2 + 8022 + Wo, +dY (=2, N=1)(i=4, N=3).

It is now necessary to determine the 56 coefficients ag\i,), bg\'.,), c%), dg\j) from the bound-

ary conditions, interface conditions and the edge conditions. These are

(a) Boundary conditions - no-slip and continuity of normal velocity:

vgl) = vgl) =0, vgl) =-V, on z,=H,

and from symmetry v:(.,B) =0on z; =0.

(b) Interface conditions - continuity of velocity and normal and shear stresses:

v(l)(H2) = 0(2)(H2), "’(3)(H1) - ,,(2)(H1)’ v(3)(_H1) ._. v(4)(-H1), v(4)(—H2) = v(s)(—Hz);
Ug;)(Hz) = U:(xg)(Hz)a etc,

o5 (Hy) = 013 (Hy), 013 (H,) = 013 (H,),

oi3(—H,) = 033 (—H)), 039 (~H,) = 730 (~ Hy).

Note that we need only impose continuity of the shear stress o,, on the surfaces
z, = H, and z, = H, since the component o3, is accommodated by the tension in
the surface fibres in layer 2. Similarly on z; = —H, and z, = —H, we need only
impose continuity of ,;.




(c) Edge conditions - zero in-plane shear stress

oy =0(i=1,2...5)one, =+L, o, = +I,

and global equilibrium which requires the vanishing of the integrals
L L

/ /022 dz, dz, a.nd/ /011
-L Tz9==+L -L

for each of the layers.

It was found that the resulting algebraic equations were not consistent indicating that
the assumption of a plane interface was invalid. However if we adopt the lubrication
approximation and assume that the layers are sufficiently thin for (Hy,~H,)*/L? (H,-

da:2 al:zc3
zy =iL

H,)?/L? and (—zi{!‘x to be neglected then the system of algebraic equations can be

solved to give the velocities u}i) in terms of V, H,, H, and H,. These are then
related to the given load F' through

L L
o — / / p(l)dmldzz.
~-LJ-L

Finally H,, H, and H, were obtained as functions of time by integrating the resulting

coupled equations for Hl, H2 and H3. This was accomplished using the algebraic
package MAPLE.

Graphs of the height profiles are shown in figures 5, 7, 9 and 11 for different viscosities
7, N and initial thicknesses Hy — H), H) — H?, 2H?.

Similarly graphs of the corresponding velocity profiles through the laminate thickness
are shown in figures 6, 8, 10 and 12. Note that the profiles in regions 4 and 5 are
the same as those for regions 1 and 2 in the T, -direction so that each figure contains

complete information about the velocity profiles v;, v, for each layer.
From these figures it can be observed that
(i) large values of n, induces plug flow in the plies (Figs 8,12);

(i) thin resin layers persist and push out the ply layers which thin more rapidly (Fig
10);

(iii) with equal initial thicknesses of resin and ply layers the maximum speed can occur
in the resin regions (Figs 6,8).
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