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Abstract

When a rectangular sample of aligned, continuous, fibre-reinforced composite is
subjected to normal pressure it has been observed that resin is squeezed out parallel to
the fibres and the fibres flow transversely. The fibres deform so that the sample becomes
'barrel’ shaped. A three-dimensional code has been developed to simulate this flow.

The material is modelled as an Ericksen, transversely isotropic continuum in which
the fibre direction is specified at each point by a vector a. The system of coupled
equations are solved using a finite-difference technique. The transverse and longitudinal
viscosities are assumed to be functions of the fibre volume fraction which increases as
the resin is forced to percolate parallel to the fibres.

The stress equations of motion are discretised using central differences for a fixed
orientation and the discretised equations solved using a pseudo-time technique. The
converged solution is then used to determine the change in fibre direction at each point
of the continuum. The process is repeated in real time using the new fibre orientation. In
the momentum equations the viscous terms are treated explicitly and the pressure
gradient implicitly. A projection method is used to ensure that the mass is conserved at
each time step. The results are in broad agreement with the experimental observations
and demonstrate the success of the continuum model to predict flow behaviour.

tutroduction

tibre reinforced composite materials consist of a matrix reinforced with tibres. These fibres may be
#her continuous or discontinuous, flexible or rigid. In the forming of the materials the matrix, in its
Wilten state, flows and transports the fibres which in turn constrain the flow. The properties of the
fished product will depend on the final position and alignment of these fibres. It is of interest
lieiclore, to be able to simulate these flows and predict the motion of the fibres.
In this paper we model the composite as an anisotropic continuum in which the fibre direction at
point is described by a vector a. In 1960 Ericksen [1] derived a general form for a class o}
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constitutive equations for incompressible transversely isotropic fluids. More recently special case
this model have been used to represent continuous fibre-reinforced composite [2-5].

For all but the simplest flow geometries a numerical approach is necessary to deal with |
complexities of the equations and the boundary conditions. Finite element schemes have I
developed for modelling composite sheet forming processes [6].

In the present work the governing equations are discretised on a general uniform grid using
finite difference scheme. The resulting system of equations are solved iteratively using a (i
marching technique based on the ideas of Chorin [7].

During the deformation process resin is squeezed out parallel to the fibres causing an increas
the volume fraction, on which the transverse and longitudinal viscosities have been observed o
dependent, [8]. In this paper we represent the viscosity dependence using the analytical ms

proposed by Christensen [9], which was shown to be in good agreement with results [

experiments on a model system [8].

Basic Equations

The composite, in its melt state, is described as an anisotropic incompressible liquid having at ¢s

point a single preferred direction represented by a unit vector a. Following Ericksen [1], it can
shown that the most general linear relationship between the stress o and the rate of strain d is

-pl + 2n.d + 2(n, - np)(aa.d +d.aa) + pyaa + E d: aaaa, {

d = %(Vu + VaT), {

where p is the isotropic pressure and u is the velocity vector, p, represents a tension in the fit

direction, 1, and 7 represent shear viscosities and E; represents an elongational viscosity in the fi
direction.

The vector a occurs explicitly in (1) and an extra dynamic equation must be provided
determine its rate of change da/dt. The most general relationship that gives da/dt in terms of & o

d, which is linear in Vu and satisfies a.a = 1, is

‘;—T +u.Va = —;—{(1 + Ma.Vu+ (A - )a.V"} - Aaaa: Vu, 4

where A is a constant. In the present paper we take A = 1 and p, = O which is an appropriate {¢
for continuous fibre reinforced materials.

The two shear viscosities 1, and 7, are assumed to depend on volume fraction f. Follows
Christensen [9] we take
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N (1+0.193f)
N (1-0.59528)° (-1

where T = (24/3 / m)f (0 =f <n/2+/3) and 0, is the matrix viscosity. Christensen's model is a semi
empirical model which conforms to theoretical results for dilute and concentrated suspensions.
It can at this point, be noted that the special case of the Newtonian constitutive equation can be

ubtained by taking a = 0.
Incompressibility imposes the constraint

V.u = 0. (6)

The materials are highly viscous and it is assumed that the inertia terms can be neglected so that
the equations of motion become

V.o = 0. (7

Numerical Technique

I'he governing equations are discretised in time using a splitting scheme originally due to Chorin [7].
I'his procedure can be used either to obtain a transient solution or as the basis of an iterative method
te reach the steady state solution. At each new time step the pressure is determined so that the new
velocity field is divergence free. For steady state calculations the time step At may be regarded as «
iclaxation parameter. If u® denotes the velocity field at time t = nAt, then the splitting scheme may
b written as

B - ll(n)

: = V.T(D), 3

At Y,
" -y

i (n+l), 9

o P ©)

V.u®d = 0. (10)

In addition the prescribed boundary conditions are imposed on u®+b. The stress term in the
momentum equation is treated explicitly. The variable u* is an intermediate velocity which is
ntroduced for computational convenience rather than for any physical reason.

We take the divergence of (9) and use (10) to obtain a Poisson equation for p@+:

V'
(o+1) _ u ; (11)

VE,
£ At
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We begin the method by prescribing some initial velocity field u®. Each step of the algoriths
proceeds as follows:

(a) Determine u’ from (8).

(b) Solve the Poisson equation (11) for pe+t using the normal component of (9) to obtain |
Neumann boundary condition on the solid walls and o.n = 0 on the free surface.

(c) Determine u®+ using (9).

The only implicitness in the algorithm is the determination of the pressure. This stage requires Il
solution of a linear system of algebraic equations.

Finite Difference Discretisation

Central difference approximations on a uniform grid are used to represent the derivatives of
velocity, pressure and extra stress. The Neumann pressure boundary condition is discretised in
same way. The only implicitness in the algorithm is in the determination of the pressure. This st
requires the solution of a linear system of algebraic equations.

The discretisation of (11) gives rise to a block tridiagonal system for the pressure unknown: |
which the diagonal blocks are tridiagonal and the off-diagonal blocks are diagonal. In a jis
processing step an LU decomposition of the matrix is determined and the entries of L and U stoi
for subsequent use in forward and backward substitution at each time step. It is important to ne
that this is computationally efficient since the entries of the pressure matrix do not depend on
time step or any other unknowns.

Once the solution has converged the change in fibre direction can be obtained by updating (
using real time and assuming the terms on the R.H.S. are known.

Numerical Results

The geometry of the three-dimensional squeeze-film is shown in Figure 1; the planes x =0, y = 0%
z = 0 are planes of symmetry. We impose no-slip conditions at the top plate, z = Z, and zero ncil
stresses at the free edges, x = X and y = Y. The dimensions which are used in the program are X
Y = 5 and Z = 0.1 units initially. The velocity of the top plate is taken to be -0.01. The parameten
m and n are the grid dimensions, generally taken to be | = 10, m = 10 and n = 10.

The convergence of the numerical scheme was tested for a Newtonian fluid of viscosity 10 &
the results compared with the lubrication approximation. The convergence is illustrated in Figures
4. Figure 2 shows the dependence of the scheme on the pseudo-time step. For this choice of physi
dimensions and viscosity it was found that a maximum time step of 1x10° was required for |
scheme to converge. The smaller the time step the greater number of iterations that are required §
the longer the time to converge. For each set of parameters considered there will be an optini
pseudo-time step for convergence and for computational efficiency it is important that a i
optimum time step is used. Figures 3 and 4 show the corresponding dependence of the maxini
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elocity in the x, y direction and pressure respectively. It can be seen from comparison of Figures 2,
) and 4 that a tolerance of about 104 is required to obtain converged solutions. The tolerance is
defined as the maximum difference of consecutive values of u, v, w or p divided by the maximum
value of u, v, w or p respectively, i.e.

is n+l i= n+l is 0+l i= ool
ow  EX W G, AKX VIR G, Tmax willtt oL Tmax pg
j=0:m k=02 j=0,m ja0m j=0:m

k=0,8 k=0.n ke0,n k=02

n+l n n+l n D+l n B+l g
Ui,k = Uj,jk Vi,ik — Vi jk Wi,k =~ Wi jk p',',k - p',lk :
max {max {-—3—31—#}, max {—l}—i}, max {M—}, max {—"—L : (12:
s j=0m om
k=0,8 kiO.

k=0,8

In figure 5 we show some dependencies on grid size. N is taken to be the product of the three
tomponents of grid size. It can be shown that the error in the u, v and p calculations is quadratic
which confirms the second order accuracy of the finite difference scheme. The percentage error is
teken in comparison with the lubrication approximation solution for a Newtonian fluid, as given by
Hays [10], which has an accuracy of approximately 0.4%. The memory required is dependent on N
nd limit of 64Mbytes of core memory restricts the code. This corresponds to a grid size of
'1x21x21 and an accuracy of about 1%. The time taken to converge is also dependent on N, as well
% on At and other parameters. This also produces a practical limit for obtaining a solution, i.e. a
non-Newtonian solution, with an optimum pseudo time step, which updates a ten times will take ar
pproximate minimum of 5 days of real time to run.
Numerical solutions for the fibre-reinforced model characterised by equations (1) to (3) are
llustrated in Figures 6 - 11 for a matrix viscosity m_ of 10. The fibres are taken to be initially straight
and parallel to the x-axis. The orientation vector a was updated in real time, using equation (3), in
lon real time steps of 0.1; in this time the thickness of the composite is reduced by 10%. For a
volume fraction of 0.6 the Christensen formulae (4) and (5) shows that M>N,, 1.€. it is easier to shear
the composite in the fibre direction than it is in the transverse direction. When squeezing the material
It 1s observed to flow dominantly in the transverse direction with only a small amount of flow in the
libre direction. This would seem to contradict the shear flow prediction. However, if the elongational
iscosity is taken into account it can be shown that a suitable choice of the parameter E; will restrict
flow in the fibre direction. Figure 6 shows the maximum velocities in the transverse and longitudinal
directions as functions of E;. It can be seen that as E, reaches 107 very little flow is observed in the
hbre direction. This corresponds to a very small change in volume fraction, Figure 7, but a large
increase in the force required to maintain squeezing the sample, Figure 8. As can be seen from F igure
' the change in volume fraction, during the squeezing flow, is small, especially at large E,. Hence,
the change in shear viscosities is also small and as E, increases becomes negligible. Figure 8 shows
the increase in the force required to maintain squeezing. This predicts that the inextensibility of the
libres causes resistance to squeezing flow and accounts for the large forces required in experiments
lo deform the samples, forces much greater than are predicted from the shear flow data. As E,
ncreases the flow becomes more two-dimensional and the material tends to move only in the
liinsverse direction with a corresponding decrease in the fibre rotation, Figure 9. Figures 10 and 11
how the shape of an initially square sample after compression, for values of E, = 10° and 107
iespectively. It would seem from the numerical results that 106 < E, < 107 would be consistent with
lic experimental observations. In practice the elongational viscosity of a composite material is very
hard to measure directly and no confirmation of this result is yet to hand.
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Conclusions

In this paper a finite difference method has been presented for the determination of the fil
reorientation in an idealised anisotropic continuum. The shear viscosities dependence on voluni
fraction have been considered and the dependence on E, closely examined. It has been shown thi
the elongational term is very important and it would seem from the numerical results that E; = I
would be consistent with the experimental observations. The results are in broad agreement with (s
experimental observations and demonstrate the success of the continuum model to predict fk
behaviour.
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Figure 1: Geometry of three-dimensional squeeze-tilm
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Figure 2: Convergence dependence on At
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Figure 4: Pressure convergence
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Figure 6: Velocity profile dependence on E;
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Figure 7: Volume fraction dependence on E;
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Figure 8: Load dependence on E,
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Figure 10: Schematic of fibre movement, E_ = 1x103
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