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Introduction

The short fiber reinforced polymers, compared with continuous fiber reinforced structures
have advantages in mass production geometrically complex parts by typical polymer
processing methods. During flow molding processes (injection, compression, transfer
molding) fiber orientation change occurs inevitably and the anisotropy caused by fiber
orientation affects on microstructure properties, geometric instability and other physical
properties of molded parts. in order to optimize properties and processing conditions fiber
composite structures,  numerical simulation of the flow and orientation fields are required.
Along mold flow direction the domain of orientation state can be classified into; an entrance,
a fully developed and fountain flow region ( Fig 1.). In the thickness direction, it can be
recognized three domains of orientation state; surface, transition and core layer. In this
work flow and orientation state with front advancements were solved by finite element

method.
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Figure 1. The flow regions for mold filling process



Flow field description

Governing equations of momentum, continuity and energy are simplified as follows:
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where v is velocity vector, T is temperature, p is density, k is thermal conductivity, C, is heat
capacitance at constant pressure, n is viscosity , o is stress tensor, y, is magnitude of

the strain rate tensor y . The coupling come from last term on the right in the equation (3).

The finite element approximation for velocity, pressure and temperature can be represented
in the form
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where {v}, {p} and {1} are nodal point vectors for the velocity, pressure and temperature
fields, respectively. By using Galerkin's method, transient state matrix equations of velocity
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and temperature were derived as below
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where [K 1 ],[K 7 ],[K r ] are generalized stiffness matrices, [C] and [M ] are transient and
mass matrices, respectively. The penalty formulation is uses for discrete pressure field in
place of the continuity equation and maintained incompressibility constraint, [1].

Px= -A Vii (9)
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An iterative procedure [2] is used to solve equation (7) with Uzava's scheme, and constant

convergence accelerator. To ensure uniform continuity enforcement a viscosity-dependent
penalty parameter A is introduced (where is pn local viscosity, B is large constant machine



dependent). The finite element matrix equations were solved by applying fully implicit time
stepping scheme and the Newton-Raphson technique for velocity and temperature
simultaneously, [3],[5].

Fiber orientation phenomena

The orientation state of the fibers defined by use second order tensors. Such tensor has
defined as the dyadic product of the unit vector p averaged over all possible
directions (Fig. 2).
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Figure 2. Definition of fiber orientation

The fiber orientation field are described by evolution equations for second order orientation
tensor a;,proposed by Advani and Tucker, [3].
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where is C, and A are Interaction coefficient fiber/matrix and shape factor respectively, o;

and y, are the vorticity and strain rate tensors, respectively, &, are the Kronecker delta

tensor. The fourth order orientation tensor a;u, was approximated as a linear combination of
linear and quadratic second order tensors, [3].



The spatial orientation field is discretized using nodal values for a;; and a;2 components

ap,
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Finite element formulation of the orientation equation are obtained by applying Galerkin's
method

[Cal{a}+Ksl{a}={Fs} (13)

Orientation states for the entire flow field can be obtained by solving the above equation by
Newton-Raphson technique and implicit time stepping scheme, [3].

Grid generation

Industrial polymer processing problems involve flows in domain of complicated geometry.
A mapping technique for easy handle complicates geometry is known as numerical grid
generation. Numerical grid generation on any irregularly shaped geometry (physical
domain) has performed by essentially mapping the boundaries of the body to a more
regular shape in computational docmain. A mesh created on the transformed, simpler
domain can be mapped back to provide a curvilinear mesh on the original regular shape.
Figure 3 illustrates mapping process and the associated meshes. Automatic mesh
generation consists of the elliptic grid generator described as follow, [4]
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where J is the transformation Jacobian, and a, b, ¢ are geometric coefficients. The grid
control function P and Q have selected in order to achieve proper boundary points and
force grid line to intersect boundary in normal fashion.
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Figure 3. The numerical mapping between physical and computational domain

Central differencing of equations (14) and (15) yields a coupler pair of difference
expressions that are then solved to obtain the location of the mesh node’s x(i,j) and y(i,j).
The procedure requires only the specification of the fluid boundaries, i. e. the inlet gate, the
mold side walls touched by the fluid and the free surface. After grid generation, the
automatic remeshing and moving contact algorithms are essential for these type problems.
The node location in old mesh element are performed by parametric inversion [5]. The
bounding box of each element is identified and the coordinates of the node of interest on
the new mesh are checked against each bounding box.

Numerical Results and Discussion

For rectangular shaped cavities numerical result was obtained. The polypropylene fiber
suspensions are chosen as model example. Temperature of the fiber suspension at the inlet
is 500 K with and mold temperature are taken 325 K. Viscosity of the suspension is a
power-law function of shear rate and temperature, [1].
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The other materials constants are as follows:

p=08-10° kg /m’
C,=3-10°J /kgK
k=015J/smK

For every time step using elliptic grid generator finite element mesh are determined as
shown by figure 4. Nine node isoparametric elements for velocity, temperature and four
node elements for pressure are used. The advancings of the melt front are corrected by
moving contact algorithm for intermediate points.

a t=0s initial mesh

b

C % === t=1,5s
Y4 melt front
I

FHNIEBERRRE
— - B e e e e -d-—_U_p x
tl=Os 0,6s 10s 15s

Figure 4. Finite element mesh with melt front movement

Figure 5. Fiber orientation contour plot ( component ayy )



Figure 5 show contour line plot of tensor component a;; of orientation tensor. The situation
when each corner of the mold is complete filled. it is easy observed nonhomogeneous and
anisotropic orientation behavior. In corner region orientation changes are rapid, and result
from this region must be taken with experimental verification.
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Figure 6. Temperature distribution in midplane Z=0
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Figure 7. Temperature distribution across the gapwidth



Temperature distributions across midplane of the cavities characterize temperature
gradients along mold flow direction (Fig. 6). In the fountain region temperature distribution
by rapid shear strain rate changes. Temperature profiles across gapwidth depend on
location of the cross-sections along flow direction, as it evident by Figure 7.

Conclusion

A numerical model for molding flow phenomena with prediction of the fiber's orientation
states in thin molding part is presented. Temperature, velocity and orientation field are
calculated by finite element method along flow direction and through the thickness of the
part. The orientation strong vary through the thickness of the part, causing the molding to
appear layered. The future work must be directed toward proper establishment the
convergence criteria with error estimation capability.
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