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Abstract

A viscoelastic response can be observed during the processing of
highly anisotropic, continuous fibre-reinforced composites. Some con-
stitutive relationships which describe anisotropic materials, include an
elastic response via an infinitesimal strain tensor. Such models do not
take the ‘history’ of the fluid into account. By adopting a convected
frame of reference approach, a viscoelastic model is derived which de-
scribe anisotropic fluids with ‘memory’. The response of the models
in some simple flows is determined.

1 Introduction

Continuous fibre-reinforced composites are highly anisotropic materials which
are used in a many areas including the aerospace industry, automotive en-
gineering, marine technology, the sport and leisure industry and medical
technology. In many cases the components take the initial form of a fat
laminate which consist of plies that have been consolidated. Each individual
ply is composed of fibres set in a resin matrix. The laminate is heated to
a temperature at which the resin becomes pliable and then deformed into
the required form. The resulting flow regime can be extremely complicated
and in certain cases the composite laminates have been observed to exhibit
a viscoelastic response.

There exist several constitutive descriptions of anisotropic materials. Some
of these mathematical representations include the effect of elasticity through
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an infinitesimal strain tensor but such models do not account for the ‘history’
of the material. The aim of this work is to develop a constitutive equation to
represent viscoelastic, anisotropic materials with ‘memory’. This is achieved
by combining ideas of Spencer [1] with those of Oldroyd [2].

In section 2 the kinematics of a class of materials possessing directional qual-
ities are derived using a convected frame of reference approach and shown to
concur with existing descriptions. Subsequently, in section 3, the constitutive
equations are stated and finally, the behaviour of the new model in unsteady,
start-up shear flow is examined in section 4.

2 Kinematics

Let £ be a co-ordinate system embedded in the material such that each
particle has the same co-ordinates for all time. Define the metric 7 (t) such
that ds® = ;. d€'d¢*, where ds is the distance between an arbitrary pair of
neighbouring particles. If a® is a unit vector that describes the fibre direction
at a point then vy;a‘a® = 1 and for neighbouring particles on a given fibre

d€ = a’ds.
In the embedded convected co-ordinate system

oa’
ot

where 7,, are components of the rate-of-deformation tensor.

= _ainpqapaq, (1)

On transforming from the convected frame of reference to a fixed Cartesian
frame 5 .
1/0v v,
dog == =L +—], 2
Tlpg = Upq ) (&vq + 8:6,,) (2)

where x and v are the position and velocity vectors in the fixed frame respec-
tively, and the partial time derivative, 8/9t, in the convected frame trans-
forms to the contravariant convected derivative, 19/9¢, in the fixed frame. On
using symmetry eq. (1) can be written in the fixed frame as

g v
— = g0, —, (3)

that is
U
- Qm— = —Q;QCpyy—. (4)



For inextensible fibres ds? is constant which implies Ja; /9t = 0 so from egs. 3
and 4
3’01
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which is the usual fibre inextensibility condition and
o al_—;’ (6)

(cf. Spencer [1]).

3 Constitutive equation

The constitutive equation is written as follows

o = —poik + Tasar + 0l (7)
Yo!
O + M2 = 2n7dy + 2 (0 — N1) (@i Qmdimk + Qi)
It

9
Ao (2nrdiy + 2 (1 — 0r) (@i0mdmk + aramdin)) (8)

where o and of; are components of the stress and extra stress tensors, i
are components of the identity tensor, p is the pressure, T is a tension in
the fibres arising from the inextensibility condition, 7, and ny the longitudi-
nal and transverse viscosities respectively and A; and A, the relaxation and
retardation times.

4 Unsteady, start-up shear flow

The problem is set within a Cartesian frame of reference O(z, y, z) oriented
as shown in fig. 1. The figure shows a composite laminate positioned between
two rigid plates of which the upper one is fixed while a velocity, V, is applied
to the lower one.

The velocity field throughout the laminate is assumed to be of the form
Y= (u(y’t)’ovw(y’t))7 (9)

which automatically satisfies the continuity equation V.v = 0. The fibre-
orientation vector is assumed to be

a = (cos a(y, t),0,sin a(y, 1)), (10)
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Fixed rigid plate

Pull-out plate
Figure 1: Geometrical configuration for the unsteady, start-up shear flow

so that all the fibres lie within the shear planes. Substituting egs. (9) and
(10) into the fibre inextensibility condition, eq. (5) yields

Ja;

— =0, 11

o, (11)
so the fibres do not rotate as the flow progresses.

The equation for the conservation of mass,

Dv

— = V. f 12
completes the set of equations required to solve the problem. In eq. (12) p
denotes the density of the material, D/Dt represents the material derivative

and f is the body force vector. All other quantities are as defined previously.

On substituting the velocity field and fibre-orientation vector into the con-
servation of mass and constitutive equations they reduce to

Ju 904,
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and



do., Ou Ju
e (B2
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+(nL — nr) (cos2 o + cos asin a-—)

Jy oy
+A2 (nT :;gt + (nL — nr) (cos2 aaajgt
+ cos asin a?ji)) (16)
oot (= Gocty) =
+(nL — nr) (sin2 aa—w + cos asin a@>
dy dy
+A2 (777“% + (L — nr) <sin2 0‘38;;;
+ cos asin a;;;t)) (17)
ol + Alagj;"y = 0, (18)
respectively.

These equations are subsequently solved using a numerical time-marching
technique.

5 Results

The numerical procedure was tested by simulating the start-up shear flow of
a Newtonian fluid. The results were found to agree, to within the tolerance
of the numerical scheme, with the textbook analytic solution to the same
problem.

The start-up flow of an inelastic anisotropic material was then simulated.
Fig. 2 shows typical velocity profiles obtained in the z-direction. The fibres
were orientated at an angle of 30° to the z-direction through the laminate
and the lower rigid plate was displaced with a constant velocity of 0.5 mm/s.
As expected the velocity profiles gradually tend towards a steady-state shear
flow profile.
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Figure 2: Typical start-up velocities in the z-direction for an inelastic
anisotropic fluid

An example of the velocity profiles obtained in the z-direction is given in
Fig. 3. It is evident that during the start-up phase of the flow the model
predicts a significant velocity in the negative z-direction that decays to zero
as steady state is reached.

The effect of elasticity on the velocity field in the z-direction is shown in
Fig. 4. In this example the fibres were orientated at an angle of 45° to the z-
direction. The relaxation and retardation times are systematically increased
with their ratio being kept constant. It is clear that as the elasticity of the
material increases it can lead to a large velocity overshoot. In the case where
A1 =9x10"*sand Ay = 1 x 10™* s the velocity within the laminate can be
almost twice that of the lower plate. As the simulation progresses in time
the expected steady-state profile is obtained for all values of A; and As.

The velocity field in the z-direction for an elastic anisotropic material is
shown in Fig. 5. The figure shows clearly that the velocity in the z-direction
is increased significantly by the presence of elasticity. Indeed, for the two
most elastic examples shown the material flows in the positive z-direction in
some parts of the laminate and the negative z-direction in others.
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Figure 3: Typical start-up velocities in the z-direction for an inelastic
anisotropic fluid

Figure 4:
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Figure 5: Typical start-up velocities in the z-direction for an elastic
anisotropic fluid

References

[1] Spencer A.J.M., Deformations of Fibre-reinforced Materials, (Clarendon
Press, Oxford, 1972)

[2] Oldroyd J.G., Proc. R. Soc., A245 (1958) 278



