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Abstract

A finite element model for sheet forming of unidirectional continuous fibre reinforced
composite laminates, which incorporates large deformation contact elements for
modelling tool contact and interply slip, is presented. The composite plies are assumed
to behave as an ideal fibre reinforced fluid, having the constraints of inextensibility in
the fibre direction and material incompressibility. A finite element model has
previously been developed which can simulate large deformations of an ideal fibre
reinforced fluid body in plane strain using a quasi-static approach. This model is
extended in this paper to include interply effects and tool contact by using special
contact finite elements. The potential of the model is illustrated using test case
simulations.

1 Introduction

Sheet forming manufacturing processes are a means by which composite laminates can
be formed into a variety of complex curvilinear shapes [1]. Thermoset composite
forming, widely known as the 'hot-draping’ process, is seen a cost-effective alternative
to hand-layup of prepreg over tool surfaces. Thermoplastic composite forming, in
particular diaphragm forming and press forming, can provide an effective means of
producing finished structural shapes in a single moulding process involving heating,
forming, and cooling. However, forming such a highly constrained material as a
continuous fiber composite laminate presents considerable difficulties. Fiber buckling,
fiber washing, void formation and warping are some of the problems that must be
avoided if a component is to be formed successfully. The quality of a press formed
component will depend on many factors such as mould design, laminate lay-up,
forming rate and temperature etc. Software tools that simulate the press forming
process can assist the designer by allowing a prediction of the final part quality, and
can help avoid the traditional (and expensive) trial and error design procedure.

A unidirectional continuous fiber composite consists, during the forming process, of
very stiff, continuous, highly collimated fibers embedded in a relatively compliant
matrix. The matrix may be a thermoplastic, in which case the forming takes place
above the melt temperature of the polymer. It may also be an uncured thermoset
matrix, in which case the forming is carried out at temperatures between 50°C and
100°C, where the matrix is soft but not quite molten.
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Fig. 1 Important forming mechanisms for unidirectional composites.
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Fig. 2 Hierarchy of forming mechanisms needed for components of increasing
complexity.

The dominant characteristic of both these types of materials is the very high viscosity
in the fiber direction compared to other unreinforced directions. The fiber directions
may be considered inextensible during flow, resulting in a material which deforms
primarily in shear, along and transverse to the fiber direction. This situation is further
complicated in reality as all practical laminates will have plies of more than one fiber
orientation, all with different inextensible directions.

Figure 1 illustrates the forming mechanisms observed in these processes. The two
main shearing mechanisms are the intraply mode, where fibers within each ply move
past each other in the plane of the ply; and the interply mode, where plies that cannot
stretch in a particular direction slide over each other in order to achieve a laminate
curvature. Secondary mechanisms include transverse flow of fibers and matrix material
in response to pressure gradients, and resin percolation, more often seen with
thermoset matrix materials than with thermoplastics. Fabric reinforced composites
have other forming mechanisms which will not be dealt with in this paper. Figure 2
shows the hierarchy of mechanisms that is needed to form particular shapes. For
simple consolidation between matched metal dies, transverse flow and resin percolation
are sufficient. For single-curvature forming, interply slip is needed to allow for fiber



inextensibility, whereas for double-curvature forming, all four mechanisms are needed
to match the material to the complex surface. The formulation presented here is
capable of modelling intraply and interply shear, but does not model resin percolation,
or transverse flow in the mould axis direction. Also, the formulation does not allow
for transverse flows of plies whose angles are other than 90°. However, it is felt that,
as most thickness changes in the 1-3 plane are due to transverse flows in the 90° plies,
rather than in the angle plies, the model is not unduly restricted.

The model presented here will deal with single-curvature forming situations only.
These are an important class of sheet-formed products, including J-beams, U-beams,
sine-wave spars, and Z-stiffeners for aerospace applications, some of which are
illustrated in Figure 3. The key deformation mechanisms here are the slip between the
plies and the transverse flow within each ply in response to pressure gradients as the
material contacts the tool. In particular, the assumption of plane strain, or plane
deformation conditions, in the plane transverse to the axis of the component is
employed (ie. the 1-3 plane). This assumption is appropriate for regions near the
centre of a long prismatic shape, as shown denoted by section A-A in Figure 3, rather
than at the ends (sections B-B and C-C), where flows along the component axis (in the
2 direction) may also occur.

Fig. 3 Typical single-curvature components that are formed from flat composite
sheets.

Finite element modelling of composite sheet forming processes has taken two routes -
the implicit and explicit approaches. The explicit method has been applied by Pickett
et al. [2] as part of an overall programme in the simulation of composite press-forming.
The implicit method, which may be more suitable for slower forming situations, has
been developed by O Bradaigh and co-workers for plane-stress [3,4] and plane strain
[5,6] flow situatiomns.

2 The ideal fibre reinforced fluid model

Rogers [7] introduced the ideal fibre reinforced fluid (IFRF) constitutive model for
unidirectional continuous fibre reinforced composite melts. This model assumes that
the material behaves as an anisotropic Newtonian fluid with the constraints of
inextensibility in the fibre direction and material incompressibility. This constitutive
model is used as the basis for the present formulation.



The IFRF constitutive relationship is, in indicial notation with repeated suffix
summation, for (i,j =1,2,3) [7]:

c; = —p(8ij -aa,)+Taa;+ 2N d; +2(N, — Ny Na,a,d,; + aad,) (1
a is a unit vector representing the local fibre direction; d is the Eulerian rate-of-strain
tensor; J; is the Kronecker delta (8; =1, i=; 3,=0,i#]); o is the stress tensor;

m, is the longitudinal shear viscosity; My is the transverse shear viscosity; p is an
arbitrary hydrostatic pressure; and 7 is an arbitrary tension in the fibre direction.
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Fig. 4 The co-ordinate system axes and the unit fibre direction vector. 0 is the ply
fibre angle. Initially, the IFRF ply lies in the 1-2 plane, and thus a3 =0 when ¢t =0.
Once deformation begins the a3 becomes non-zero.

2.1 Plane strain ideal fibre-reinforced constitutive law

If the ply can be assumed to be infinitely long in the 2-direction, then plane
deformation can be assumed in the 1-3 plane (figure 4). The conditions for plane strain
in the 1-3 plane are d,, =d,, =d,, =0. When these are substituted into eqn(1) the

constitutive relationship reduces to:

O Dy, 0 Dl3 d Ta12 P(l_alz)
o,1=| 0 D, Dyl d, |+| Ta, |-| pl-a?) 2)
O3 Dy D,, D;|2d, Taa, —pa,a,

where Dy, =2n; +4(M. —Npa,’
Dy, =207 +4(M, — My )a*
Dy, =Ny +(TIL —n'r)(aqz + a32)
Dy, =Dy, = Dy = Dy, =2(M, —Mp)aya,

As this formulation is being developed to model fundamental shearing flows, dynamic
terms are omitted from the equilibrium equations, and the problem is treated as being
static over the flow domain . When modelling actual forming flows the flow domain
becomes a function of time, Q(f). If the viscous forces dominate the forming flow,
which is the case for many sheet forming situations, the dynamic terms can still be
neglected, and the problem can be treated in a quasi-static fashion over the time
domain ¢. The equilibrium and boundary traction equations become:
Gij Jd =0 in Q
3)

tj=ni5ij on F[ (i,j=1,3)



where T, is the boundary on which the tractions f are prescribed, n is the unit normal
vector on the boundary. Body forces are neglected in the present formulation.

2.2 Plane strain IFRF finite element formulation

A finite element formulation for modelling flow in an ideal fibre reinforced Newtonian
fluid in plane strain has been developed. Details of the derivation of this formulation
are given elsewhere [5]. The formulation uses the mixed penalty method:

K' K K |(e7] [t
(k)" -LtM' 0 [¢'r=10 4)
&) o -Zmr|le?] [0

¢’, ¢', and ¢° are vectors of nodal velocities, fibre tensions, and pressures
respectively.  The velocity, fibre tension, and pressure field are discretized
independently: v=9=N"¢'; T= T=N'%'; p=p=NPoP ; where N¥, N, and
NP are matrices of the interpolation functions for velocity, fibre tension, and pressure
respectively. The matrices in eqn(4) are given by:

K'=[ (") DB d0Q K'=] (") aN'dQ
K* =] (B") [m-a]N* dQ £=] (N")&dr
and M' =] (N')'N'dQ M’ = [ (N?)'N°dQ

The B’ matrix is defined from the strain rate definition as: ¢ ~é=B"¢". The D
matrix is the 3x3 matrix given in eqn(2). The column matrices a and m are:

T
a= <a12 a32 a1a3>

m=(1 1 o)

&)

o' and oP are scalar penalty numbers for fibre tension and pressure respectively. The
constraints of fibre inextensibility and incompressibility are enforced exactly as
ol — oo and o — oo. The formulation uses a Q 9/4/4 element. This element utilises
a biquadratic velocity interpolation function, and discontinuous bilinear interpolation
functions for the fibre tension and pressure. The fibre tension and pressure nodes are
located inside the element at the 2x2 Gaussian integration points. All the element
matrices are calculated using full 3x3 Gaussian integration.  The values
n, = 8000 Pa.s, M, =6000 Pa.s, o =10, and of =10" were used in all the

examples in this paper.

3 Kinematic constraint updating scheme

An ideal fibre reinforced fluid is a kinematically highly constrained material. This is
even more true when the plane strain condition is added. Rogers [8] states that for an
IFRF under plane strain conditions "when the position of one particle on each fibre is



given, the positions of the others along the fibre are obtained from the inextensibility
condition." Given that the fibres are all parallel and remain so during deformation, this
suggests that if a single point on an IFRF ply is defined then all the other material
points can be found, for a given set of boundary conditions, based on the kinematic
constraints alone. A large deformation finite element formulation has previously been
developed [6] which exploits the constrained nature of an IFRF body in plane strain in
order to maintain the IFRF kinematic constraints of incompessibility and fibre
inextensibility during mesh updating of quasi-static solution steps of the formulation
given by eqn(4). The approach adopted is as follows. By judiciously selecting one or
a few points on an IFRF ply and integrating the velocity, (obtained from eqn(4),) to
find the displacements at these points, the kinematically correct geometry for the entire
ply can be followed during large deformation mesh updating.

3.1 Kinematics

A material point's co-ordinates can be defined in terms of the time and its reference
condition: x; = x,(X,.£), X, is the point's position at t =0, (i =1,3;R =1,3). Similarly
the fibre direction at a material point at r=0 is given by the unit vector
a(X R,O)= A(X I ) The fibre direction at time ¢t can be found from the deformation

gradient:

ox;
ai; = mAR (6)

Note that ay = A, is constant for plane strain deformation in the 1-3 plane. The

condition for large deformation incompressibility is [8]:

A,

K| : @

That is the determinant of the Jacobian matrix must be 1. The condition for large

deformation fibre inextensibility is [8]:
ox; ax; =
3X: 3%, ApAg =1 (8)

3.2 Large deformation finite element formulation for mesh updating

The kinematic updating formulation applies the kinematic constraints during mesh
updating by penalising them directly at the nodal points. The reason for taking this
approach is to obtain a good fibre direction distribution throughout the mesh. If the
inextensibility constraint was integrated over the elements then each element would
effectively have a single fibre direction, and this could conceivably lead to the mesh
"locking" if the difference in fibre direction between adjacent elements became large.
No attempt is made to model the constitutive behaviour of the material during the
updating phase, the aim is to simply enforce the kinematic constraints.

The constraint conditions can be written as Cd =0 where ¢ is the displacement
solution vector and C is the constraint matrix. Thus from eqn(7) the large
deformation constraint matrix for incompressibility C, is given by:



DN, 8w N, u N, P ON; g du N g du O ' =C. 0=0 (9
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where u,,u, are the displacement components, and the N are the isoparametric shape
functions. Similarly, the large deformation fibre inextensibility constraint matrix C;

can be found from eqn(8):

: oN;  du, ON; ! oN;  du, N, !
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The constraint matrix can be written as C=FG+EG. F defines the linear terms of
the constraint matrix, E defines the non-linear terms. G consists of the global

derivatives:

aN; - . [ ou
Fra : &,
oN; ou
0 L ¢1 O
s X, il_| &, 11
Go i @, O (1)
X4 J X3
v, : sl
0 s Rl e

Thus the incompressibility constraint matrix is C p= FpG +E,G, where:

F,=[1 0 0 1 s
Epz%[g;_z _% _guTJl %ln]

Similarly, the constraint condition for fibre inextensibility can be written as
C, =F,G +E,G, where from eqn(10) it can be seen that:

e 2 2
F,=2[A] AA AA A e
— |8 2 o 2 My Xy oy I el Gy .

E= [A x Tadsm A xTasx AX TAAE A FE, t44, %,

We follow the general approach outlined by Zienkiewicz & Taylor [9] for dealing with
geometrically non-linear problems. We take a differential of the constraint equation:

d(Cq)) = Cd¢. For the incompressibility and fibre inextensibility constraints this leads

to the respective definitions:

C, =F,G+2E,G C, =F,G+2E,G (14)

The constraints are enforced by penalising them using penalty numbers o

A =0,Cpo A, =0,C,0 (15)



These terms can be considered as Lagrange multipliers for the pressure and fibre
tension. In order to employ the Newton Raphson technique a residual must first be

found: ¥ = C 'A. To define the constraint components of the characteristic matrix the
residual is linearised:
d¥ = CTdA+dCTA =oC T Cdo+GTMG dp = Kdo+ Kydo (16)

K is known as the initial stress matrix [9]. The M matrices can be found for the

incompressibility and fibre inextensibility constraints by noting that dcT =GT24E™:

0O 0 0 1 Al 0 44, O
0O 0 -120 0 4 0 aa

Mo=hlo _1 0 of MTH,.. 0 & 0 o
1 0 0 O 0 a4 0 Al

In theory, penalising the compressibility and the fibre extensibility should be sufficient
to maintain the IFRF constraints, but in practice it is found that introducing the
additional constraint of inextensibility in the direction normal to the fibre direction can
significantly improve the results, particularly when the deformation becomes large.
The condition of inextensibility in the direction normal to the fibre direction is the
consequence of the incompressibility constraint in plane strain [8]. Inextensibility in
the direction normal to the fibre direction is penalised in the same way as inextensibility
in the fibre direction, except that a normal direction vector is used. This constraint is
given the subscript n. The full updating formulation now becomes:

[K+Kp+K0p+Kt+K0t+fn+K(m]¢=R—Rp—R,—Rn (18)
where K,=a,C,C, Kgp =G'M,G R,=C,\,

K, =0,C'C, K, =GTM,G R, =CA,

K,=a,C.C, K,,=G™™M,G R,=C, A\,

The K matrix must be added so as to make the equation system non-singular.
R contains the applied forces and residual terms due to K. The K" matrix given in
eqn(4) has been used with i, =m, =1 and o), =0, =@y = 103, in order to eliminate

the anisotropy and minimise the effect of the K component on the solution. It can be
calculated at the reduced integration points to save computational effort.

3.3 Overall solution scheme for kinematic mesh updating

The approach we take is to solve for the velocity field for each time step using the
IFRF static formulation given by eqn(4). The boundary conditions where the velocity
was constrained to zero are retained as zero displacement constraints. The force
boundary conditions are discarded during the mesh updating phase. Next, one or a few
degrees of freedom are selected as defining the mode of deformation, and these are
used for the displacement constraints for a given time increment. These displacement
constraints are used in the formulation given by eqn(18) to find the updated mesh for
the next time step. Thus the mesh for the IFRF static formulation given by eqn(4) is
updated in a quasi-static manner using the large deformation kinematic formulation



given by eqn(18). Results for test cases using this approach are given in an earlier
paper [6].

4 Modelling interply slip and tool contact

When a multi-ply laminate is consolidated a "resin-rich" layer consisting of the matrix
material forms between the plies. This layer is thin, for instance typically 10 pm thick
between thermoplastic plies of 0.125 mm. Shear deformation in the interply layer is an
important flow mechanism during the forming of curved components. Because the
interply region is very thin compared to the thickness of a ply, it would be difficult to
model this region using conventional continuum finite elements. Instead, the interply
region is modelled using special contact finite elements. Thus, in order to model
forming flows in multi-ply laminates, a mesh is created for each individual ply and these
meshes are joined along the inter-ply region using contact elements. This approach has
been used to model static forming flows in multiply laminates, treating the interply slip
mechanism as a contact-friction phenomenon [5]. The fact that the kinematic updating
formulation presented in section 3 is displacement based permits the use of large
deformation contact finite elements to impose interply slip kinematic conditions during
mesh updating. These kinematic conditions are simple: individual plies must not
penetrate each other, nor should they separate (no attempt is made to model
delamination.) Also, as with the kinematic updating formulation presented in section
3, no attempt is made to use a consititutive law to model interply slip during mesh
updating. There is no contact friction during mesh updating, the only requirement is
that the contact kinematic conditions are satisfied. The-details of formulating contact
finite elements are involved, and can be found elsewhere [10]. Details specific to the
present formulation will be documented in future work.

Tool contact is also modelled using contact finite elements, except that the tool is
allowed to separate from the work piece. Thus tool contact occurs only when the tool
exerts a positive pressure on the work piece. This means that the only kinematic
condition that needs to be satisfied during mesh updating is that tool nodes should not
penetrate the work piece. Tools are assumed to be rigid, and to move in the
3-direction (vertical) only. Thus each tool can be treated as a single degree of freedom
in the finite element formulation, the tool geometry being dealt with as a multi-point
constraint. An advantage of using a tool is that it is not necessary to select degrees of
freedom to be used as displacement boundary conditions during the kinematic updating
stage. The tools themselves are the displacement boundary conditions during mesh
updating.

5 Test cases

Figure 5 shows a model for a 3 point bend test. The punch and supporting roller are
the “tools”. A displacement of 100 mm/min is applied to the punch, while the roller is
stationary. An analytical solution for this problem is given by Martin et al. [11], and
this is compared to the finite element results in figure 6. A press forming simulation of
a two ply laminate is shown in figure 7. There is a 7% error in the inextensibility
constraint in this problem, a consequence of using a very large time step. It should be



possible to reduce this error to a more acceptable size by using smaller time steps in
future work.

() (b)

© (d)

Fig. 5 (a) Model for 3 point bend test, adapted from Martin et al. [11]. (b) Finite
element model for 3 point bend test of 0° IFRF beam. Length =40 mm, a =4 mm,
b =32.5 mm, R, =2 mm, R, =4 mm. Then punch (left) velocity is 100 mm/min. The
roller (right) is stationary. Deformation shown after 4 s (c) and 8 s (d). The average
errors for the IFRF kinematic constrains of inextensibility and incompressibility are

: less than 2%.
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Fig. 6 Comparison between finite element results and analytical solution for 3 point
bend test.
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Fig. 7 Press forming test case. The work piece is a two ply laminate, both 0° plies.
(a) The tool, consisting of stationary bottom piece, blank holder, and forming tool.
The forming tool moves down at a constant velocity of 2.5 mm/s. (b) Time: 0s.

(c) Time: 1s. (d) Time:2s. (¢) Time: 3s. (f) Time: 4 s. At the end of forming the

average error over the two meshes for the IFRF kinematic constrains are:
inextensibility 7%, incompressibility 2%.

6 Conclusion

A previously developed finite element formulation which can model large deformation
sheet-forming of single curvature composite shapes was extended to included the
interply slip mechanism in laminates, and tool contact, by the use of large deformation

contact finite elements.
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