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Abstract

The considered process is the injection moulding of a polymeric melt in a
porous pre-form of reinforcing elements. Process simulation is of consider-
able value in assessing production parameters and in improving the quality
of manufactured products. The proposed model is deduced in the frame-
work of deformable porous media. The model consists in a set of partial
differential equations, time dependent, defining two coupled problems: me-
chanical equilibrium and diffusion in a permeable medium. The equations
are solved by means of a finite element method.

1 Introduction

A number of composite materials are manufactured by an industria) process named
resin transfer or injection moulding. It essentially consists in injecting a polymeric
melt in the mould cavity. Before injection, a pre-form made of mats layers or
aligned fibers is introduced in the cavity. After filling, the resin is cured (cross
linked) by catalyzing agents, resulting in the formation of a thermosetting com-
posite.

In several practical situations the pressure driving the flow is large enough to
significantly compress the reinforcing network, especially ahead of the infiltration
front (see, for example [1], [2] and [3]). It is fundamental that the matrix has
filled back the whole die and the pre-form is not compressed in order to have an
homogeneous product.

As a matter of fact, because of the high complexity of the phenomena occurring
in the process, designing such moulds is a delicate operation that generally requires
“trial-and-error” methods [4].
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The final geometry of the cavity and the injection parameters are typically
known only after many attempts, requiring the production of several moulds, as
well as a lot of test and quality controls.

The aim of the mathematical modelling, which is carried out in the present
paper, is to avoid this expensive and empirical stage by means of a model which
allows to reproduce, through numerical simulations, the principal steps of the
process.

The modeling of the filling stage remains a complex task. At this stage, in order
to study the three-dimensional mechanical problem, we consider an isothermal
process. We refer to [5] for one dimensional models which consider also a variable
thermal field.

2 Modeling the infiltration process

The injection moulding process can be schematized as an infiltration of an incom-
pressible liquid into a deformable porous medium composed of an incompressible
solid. The spatial domain where the problem is formulated, defined as 2, is the
one occupied by the solid pre-form and in general depends on time, i.e. Q = Q (1).

Since we are dealing with infiltration, Q can divided into three regions: ¥, Q¢
and © which vary in time. The domains Q¥ and Q¢ correspond respectively to the
region flooded by the infiltrating liquid (wet or saturated region) and the region
not wet by the liquid (dry or unsaturated region) where the fluid permeating the
porous solid is the air. The domain Q* represents the transitional layer between
2% and Q?. We assume that its thickness is very small if compared to the ones of
the wet and dry regions.

The coupled flow deformation problem can be described in the framework of
the theory of mixtures [6], [7] and [8]. The point is to characterize the unsaturated
region. A simple way of doing that is to use the theory of solid-fluid mixtures
assuming that the fluid component is itself a mixture composed by two fluids: the
infiltrating liquid and air [9], [10] Chapter 2 and [11]. Denoting respectively by ¢
the volume fraction occupied by the mixture of two fluids we have

¢f = ¢l + ¢az’r where ¢l = 3¢f and ¢air = (1 - 8) ¢f ’ (1)

being s a dimensionless parameter ranging between 0 and 1 called saturation, ¢;
the volume fraction effectively occupied by the infiltrating liquid and ¢,;, the one
occupied by the air. We remark that in the fully saturated region s = 1 (no air is
present) while in the dry region s = 0 since there is no liquid. Obviously we must
have

¢s+¢f=¢s+¢l+¢a.ir=17 (2)

where ¢; is the solid volume fraction.
From now on the suffix s will indicate the solid, [ the infiltrating liquid and f
the fluid mixture.
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Following the Eulerian formalism, in absence of chemical reactions and variable
thermal field, neglecting capillary effects, gravitational force and inertial terms the
equations for the three phases mixture are

¢ aqu
ot
3(;¢f) +V - (s¢;dy) =0,

t
\ TeN, t>0. (3)
V(sP)-V-T'=0,

+v'(¢sgs)=07

171—53=—MVP,
~ psos

where (3), and (3); are the mass balance equations, (3); is the stress equilibrium
equation and (3)4 is Darcy’s law. We remark that K is the permeability tensor
depending on the deformation gradient F, of the solid and on the saturation s.
The constant p is the liquid viscosity. The constitutive equations for the excess
stress T’ have still to be defined. In the present work we consider that the porous
preform behaves elastically.

The assumptions considered to obtain (3) (see [12] for a critical discussion of
its validity) restrict the analysis only to the infiltration stage. In fact, in the very
first moments of contact between the liquid and the pre-form there is a rapid
compression under the action of the pressure gradient. In particular, if the dry
porous medium is assumed to behave as an elastic body, a shock wave propagates
in the medium [13], [14]. During this transient, inertial terms play a dominant role,
so they can not be neglected. Consequently, we focus on the instants following the
transient. In our model, therefore, at ¢ = 0 the dry solid is compressed under the
full applied pressure, later, at ¢ > 0, the infiltration front passes, it engulfs a slice
of material which, relaxing, moves into the liquid.

We finally remark that the relationships between s and P are different for
each porous solid and are usually determined by laboratory experiments (see, for
instance, [10], [15] and [16]). Following [10], if we denote by P, the atmosperic
pressure, we assume

s=s(P), with s(P)=1if P> Punm.

3 Simulations
The case which has been considered is a cup and is represented in Fig. 1. ABAQUS

computer code [17] has been used for solution of the system of equations governing
the flow in deforming porous medium. The equations, written in a Lagrangian
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i i [KJ] ;
1 297.8 25.0
2 2.513 1072 -9.07

Table 1: Values of the material parameters obtained form the curve reported in
Fig. 2.

formulation, are solved by means of finite element method. For more details we
refer to [18].

The pre-form material in the composite has a non linear elastic behavior. We
have assimilated it to an elastomeric foam.

Figure 2 shows the stress-strain curve which has been considered. The plot
refers to an uniaxial compression test. Besides, we have assumed that, in the
non-stressed configuration ¢; = 0.14. It is worth mentioning that large spreading
of material properties are common among actual production, so that compression
tests should be repeated for each new batch employed.

For an elastic porous foam the functional form of the energy is (see [19] for
instance)

U= 221’ J™F (AF 4 A5 + 23 — +%(J—°‘*ﬁ-‘—1)] , (4)
=l T

where v;, a;, 3;, i = 1...N are material dependent constants, J = det(F;) and

A?, j = 1,2,3 is the j** eigenvalue of the left Cauchy-Green tensor B, i.e. ;

represents the “stretch ratio” in the 7** principal direction of strain.

In the actual problem we have set N = 2. Material parameters have been
identified by interpolating, using the least square method, the curve reported in
Fig. 2. The identification of all the material parameters has been made possible
by assuming a null Poisson coefficients 7;, ¢ = 1,2 which, for each term in the
energy function are related to ; by the expression

Bi
1+ 26;
With these assumptions the values of +; and ¢; are reported in Table 1.

The fluid polymer has been modeled as a non compressible, viscous, Newtonian
fluid whose viscosity is y = 1.6 X 1072 Pa - s.
The permeability tensor K has been assumed from literature [20] and [21], i.e

(K)ij =g K, 107 ¢s 5,;]' o (6)

where K, = 1,473 x 107!° m? and a = 6.965.
The saturation law, which we have assumed, is logarithmic

N = v= T (5)

1 S$— S,
Pea i +Ba=—s) 3
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The term s, is the minimum saturation value acceptable: in our simmlations it
has been assumed 0,02. In this way wet and dry zone are separate by a partially
saturated region whose width depends by the parameters of the saturation law, in
our examples A =0.74 KPa~! and B = 50.

Boundary conditions are applied to the die in order to constrain any rigid body
displacement or rotation. There are no degrees of freedom constrained among the
nodes of the matrix.

Two steps constitute the load history. First the fluid is admitted inside the
die and it compress the matrix material. The second step is the absorption of the
fluid by the porous material.

In the case of the cup the liquid is injected into the pre—form from the upper
side. The applied pressure is 30 K Pa. Figure 3 shows the void ratio, defined
as (1 — ¢5)/ds, after the compression phase. The void ratio in the undeformed
configuration is 6.14. After the compression (i.e. at the end of the first step) the
void ratio is uniform in the cylindrical part but not in the spherical-one. The
biggest inhomogeneities are in correspondence to the connection between the two
parts.

The infiltration process ends in about 25 seconds but the time required by the
porous solid to recover the configuration it had before the compression is about
40 seconds. In Fig.s 4 (a) and (b) the saturation at 0.5 second and at 5 second
is reported. It is possible to observe that at ¢ = 0.5 s the infiltration front is
very steep, although at 5 second it has been widened due to the smoothing of the
pressure field. The saturation in the dry region is, also in this case, slightly bigger
than 0.02.

The main technological result is the possibility to discriminate between the
instant at which the infiltration front has reached the bottom of the die and the
one corresponding to uniform fluid pressure all over the part. In a practical appli-
cation, the first instant is revealed from the fluid pouring out of the outlet gates.
Nevertheless the process is terminated only when the fluid pressure has become
uniform and the pre-form has recovered the initial shape.

The correct prediction of die filling and of injection time constitutes a serious
difficulty to the expansion of the injection molding practice for composite mate-
rials. Design methods commonly employed for the injection of polymer cannot
be transferred in a straight way to composites. The behavior of the mixture of
molten resin and pre—form has to be described correctly in order to predict the
feasibility of the process. In the present paper we propose a model of infiltration
in deformable porous medium which is well apt to numerical simulations.
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Figure 1: Deformed and undeformed geometry of the component in the first case
study. One half of the part is represented. The external radius of the cup is 22mm
large, 2mm thick and 42mm high, the radius of the central hole is 9mm. The fluid
is injected into the cup through the upper side.
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Stretch Ratio

Figure 2: Relationship between stress and stretch ratio for an uniaxial compression
test.
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Figure 3: Void ratio of the the solid preform after the intial compression.
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Figure 4: Saturation at t=0.5 s (a) and at t=5 s (b).
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