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INTRODUCTION

It is well established that the flow of resin through the reinforcing fibres during the manufacturing
of composites by liquid moulding processes follows Darcy’s law. This implies that the fibre
reinforcements can be characterised by its permeability through measurements or by the usage of
permeability models based on, for instance, the detailed fibre geometry. The fibre reinforcements
used for composites manufactured by liquid moulding processes are, in most cases, formed by
fibres which are gathered in bundles. This results in two types of flow: A microscale flow within
the fibre bundles and a mesoscale flow between the bundles. Typical length scales for the two
types of flow are < 10 um and > 100 pm, respectively. It has been shown that the relation between
the microflow and mesoflow is important for flow front phenomena such as void formation while a
number of studies have indicated that the overall flow rate through the material is, to a large extent,
set by the mesoflow; cf., for instance, [1, 2]. This is easily understood by noticing that the
volumetric flow rate per unit area is proportional to the square of the characteristic length scale in
Poiseuille flow. Hence, the flow rate per unit area on the mesoscale is as a rule of thumb, one
hundred times higher or more than it is on the microscale as long as the geometry on the two scales
1s principally the same.

A number of models have been presented that consider the flow on the microscale. Of particular
interest are the models that are aimed at high fibre volume fractions, i.e. when the fibres are close
to each other. Two such models were presented by Gebart [3] for flow along and perpendicular to a
perfect arrangement of fibres. Both these models are expressed in terms of the fibre volume
fraction, Vrand the fibre radius R according to:
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The maximum fibre volume fraction V., and the two constants ¢ and C are dependent on the
actual fibre arrangements, quadratic or hexagonal. The first of these equations are based on the
hydraulic radius and can be recognized as the often-used Kozeny-Carman Equation. An alternative
mode] for flow perpendicular to highly packed assemblies of fibres has been presented in [4]. A
direct comparison to (1b) yields a small deviation that decreases as the fibre volume fraction
approaches the maximum. The close similarity between (1a-b) and other equations presented in the
literature results in our using (1a-b) for the flow through the fibre bundles with some confidence. It
is, however, clear that deviations in the real fibre geometry from the perfect arrangements assumed
in (1a-b) may, to some extent change the results [5].
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The interest in the flow on the two scales has increased the recent few years [1, 2, 6-9]. In
particular Shih and Lee [8] have proposed a parallel permeability model for flow through bi-
directional stitched fabrics. The flow through the fibre bundles were set by models for flow along
and perpendicular to perfect arrays of fibres and the flow between the bundles by the Kozeny-
Carman equation. In [9] the flow between the bundles were modelled by solving the Stoke’s
equations for flow through a pipe and for flow between two parallel plates. It is assurned that the
velocity of the fluid at the permeable boundary is equal to the velocity within the porous media. In
reality there will be a boundary layer within the porous media in which the velocity is higher than
the one set by Darcy’s law. This boundary layer flow results in a higher velocity at the boundary as
compared to the Darcy velocity and hence a comparably larger volumetric flow rate through both
the porous media and the channels [10, 11].

The focus will here be set on the permeability of non-crimp stitched fabrics. These fabrics have a
fairly simple geometry as long as they are unloaded. But as will appear in this paper the geometry
may considerably change during compaction. At first, a model for the flow will be derived which
is based on a simplified model for the compaction. The model will then be applied on two fabrics
for the permeability of which is measured. The input parameters to the model are obtained from
micrographs of the unloaded samples and from cross-sections of the fabrics at the fibre volume
fractions considered. Finally, the results are discussed.

MODELLING

The unloaded model geometry is built up of straight fibre bundles. The bundles are organised in
layers each consisting of one row of parallel fibre bundles. In the following layer the bundles are
directed 90 degrees to the previous layer, given a structure as shown in Fig. 1. The bundles are
allowed to have a certain horizontal distribution in size and placement and each row are arbitrarily
placed in the plane. The spaces formed between the bundles are the interbundle channels. Their
geometry is obviously set by the shape and placement of the bundles. Five assumptions on the
geometry will now be introduced some of which will be relaxed in the second step of the model.
First of all it is assumed that the bundles will attain a rectangular shape as the fabric is compressed
to higher fibre volume fractions, i.e. such as are considered here. This implies that the interbundle
channels also become rectangular shaped which is a fairly good approximation for the fabric
studied as exemplified in Fig. 2. Secondly, it is assumed that the fibrebundles have a uniform
cross-sectional area in the flow direction and that the fibres in the fibre bundles are perfectly
aligned with the flow. This implies that a fluid particle that has entered an interbundle channel or a
fibre bundle directed along the flow will stay there. The third assumption is that any influence from
the stitching material is neglected. Furthermore, it is assumed that the compression of the bundles
will not influence the width of the bundles and consequently not the width of the interbundle
channels either. Finally, the height of the interbundle channel is set by the height of each layer.
Hence, all the bundles perpendicular to the plane will remain straight during compression and
every interbundle channel will have the same height.
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Fig. 1. Initial model geometry Fig. 2. Example of channel cross-sectional area.

The main assumptions for the flow equations are that the fluid is Newtonian and that it is flowing
at low Reynolds number, (much less than 1). It will, furthermore, be assumed that the velocity at
the boundary between the fibre bundles and the channels is equal to the Darcy velocity within the
bundles. The permeability of one layer with the fibres along the flow may then be expressed as
[12]:
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where A is the area cross to the flow and the indices m, #, ¢ and b denote, the number of bundles
and channels, the nth bundle or channel, bundle and channel, respectively. Regarding the layers
with the fibres cross to the flow, the fluid will alternatively move within the fibre bundles and
between the bundles. Hence the permeability is given from [12]:
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where L is the length in the flow direction and w the width of the bundles and the channels in the
flow direction. The second expression is obtained by assuming that the permeability in the bundles
is much lower than that of the channels at the same time as the width of the channels is in the same
range as the width of the bundle. The total permeability is now given from:
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with the assumption that all bundles have the same permeability (although different along and
cross to the flow). The indices i, j, k£ and / are the summation parameters for the layers directed
along and cross to the flow direction. The permeability for flow along and cross to the fibre
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bundles is here approximated with (1a-b) by setting ¢ equal to 53, C equal to 16/ (97r\/§ ) and Vi

equal to 7:/ (2\/5 ) (hexagonal pattern).

It remains now to find an expression for the permeability of the channels. By setting the velocity at
the boundaries of these channels to the Darcy velocity of the bundles directed along the flow and
by the previously presented approximations the volumetric flow rate through respectively

interbundle channel is the following:
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where V is the Darcy velocity at the boundary between the channel and the bundie. Furthermore, /
and w are the height and width of the rectangular shaped interbundle channels, respectively and
= (2a + 1). By usage of Darcy’s law and (5), the permeability of one interbundle channels may

be expressed as:
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The permeability of the whole stack is then obtained from (1a-b), (4) and (6) if the geometrical

parameters included can be determined.

MATERIALS AND EXPERIMENTAL EQUIPMENT

The materials utilised to test the model are two Ahlstrom

non-crimp-stitched fabrics; cf. Table 1. The second fabric
differs from the first by having less bundles in each direction.

This implies that the bundles, on the average, are larger for

the second fabric. The number of bundles is also different in :E?'f

the two directions of the fabrics giving the same implication.

The stitching material furthermore sets the geometry of the
fabrics. As a consequence of the method of production the

interbundle channels in the production direction are in most §

cases free from fibres while in the perpendicular direction the *

fibres often goes from one bundle to the other and hence
crossing the interbundle channels; cf. Fig. 3. The fabrics
were studied at three fibre volume fractions namely, 46.9 %,
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Fig 3. Example of fibres crossing
the channels




52.7 % and 60.3 %. This results in a height of each ply of fabric of 0.75 mm, 0.67 mm and 0.58
mm respectively.

Table 1. Data on the Ahlstrom fabrics utilised.

Number Orientation Surface density Number of bundles
(g/mz) per meter

1 0/90 450/450 260/360

2 0/90 450/450 240/280

The permeability equipment used is described in detail in [13]. It is a parallel flow cell and the
permeability is obtained from saturated samples. The permeability is measured along and
perpendicular to the production direction of the fabric at the three fibre volume fractions
considered and for three samples in each case. It is here assumed that the measurements are carried
out in the principal directions of the fabrics and hence, the one-dimensional form of Darcy’s law is
used to derive the permeability values.

In addition to these measurements some composite plates were manufactured at the two highest
fibre volume fractions. From these plates cross-sections were cut and polished so that the actual
shape of the interbundle channels of a deformed fabric could be studied. This was carried out by
means of an optical microscope connected to an image analysis system. The geometry of a single
unloaded ply was measured with the same apparatus.

COMPARISON BETWEEN THE MODEL AND THE EXPERIMENTAL RESULTS

To the model proposed five input parameters are required. They are the following: 1) the fibre
volume fraction within the bundles, 2) the fibre radius, 3) the number of bundles and channels per
unit width and unit length and 4-5) the height and the width of the interbundle channels. It will turn
out that the actual fibre radius and the fibre volume fraction within the fibre bundle is of less
importance as long as the radius is small enough and the fibre volume fraction large enough.
Hence, the following values on these parameters will be used: Vj = 75% and R = 7 mm. The rest
of the parameters will be obtained in two ways. Firstly by studies of unloaded fabrics and secondly
by studies of cross-sections of compressed fibre reinforcements.

In the unloaded case the width of about 150 channels in each direction and for each reinforcement
were derived from samples cut from the fabric while the channel height was approximated by the
height of each layer in the compressed state. Not surprisingly this approximation overestimate the
permeability as shown in Table 2. It can, however, be stated that the model, with these input
parameters, works at its best at low fibre volume fractions and for flow in the production direction
of fabric 1. The large deviation at higher fibre volume fractions indicates that the geometry of the
fibre bundles does change differently to what is assumed. Two assumptions were that the height of
the channels was set by the height of one layer and that the width of the channels could be
approximated by their width at the undeformed state. A more accurate but certainly more time-
consuming way to get the width and height of the interbundle channels is to study polished cross-
sections of composite laminates made at the fibre volume fractions of interest. This is done here for
some of the cases. As appears from Table 2 the accuracy of the results becomes much better.
However at high fibre volume fractions and for the second fabric the results are still not satisfying.
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The microscopic studies revealed some feature of the reinforcements. First of all and not very
surprisingly the bundles are not perfectly aligned to each other. Secondly the cross-sectional area of
the bundles in the production direction of the fabric are brick-like as assumed in the model while
the ones in the perpendicular direction are more lens-shaped. The consequence of the lens-shape is
that the perpendicular bundles are more easily compressed into the channels pointing perpendicular
to the production direction. It is furthermore observed that the stitching may certainly influence the
geometry of the fabric. However it is not clear how much this will affect the permeability.

Table 2. Comparison between model and measured permeability.

Material Fibre Direction Ratio between the permeability
volume fraction derived from the model and the
(%) measured permeability
Unloaded case Loaded case
Fabric 1 46.9 Production 1.8 -
Perpendicular AT -
52.7 Production 3.0 1.2
Perpendicular 7.0 1.3
60.3 Production 9.2 29
Perpendicular I12:5] -
Fabric 2 46.9 Production 3.6 -
Perpendicular 20 -
52.7 Production 6.9 2.1
Perpendicular 55 4,7
60.3 Production 19.1 2.7
Perpendicular 10.9 -
DISCUSSIONS

A model for flow through a non-crimp-stitched fabric has here been presented. The aim with the
model is to understand the flow through such fabrics so that high permeable reinforcements can be
developed. The model is two-dimensional and based on Darcy’s law within the bundles and
Stoke’s flow between them. The model compares well with experimental results at certain events
but less for other cases. With proper input data the model predicts the permeability of one of the
test fabrics in a nice way without any fitting parameters. This indicates that the model is not totally
incorrect. However, in all cases the model overrates the permeability. A probable reason for this is
that the model is two-dimensional while the fabric has a three dimensional structure. It was, for
instance, observed that the width of the interbundle channels varies quite much in the flow
direction of the fabric. This is a result of the bundles not being completely straight and hence for
every converging channel there is often a diverging channel nearby. Another observation was that
in some cases the perpendicular bundles were compressed into the interbundle channels. One fact
that still gives the two dimensional approach some validity is that the channels are interconnected
and, hence, if there is a constriction in one channel the fluid particles may move into a
neighbouring channel. This redistribution of the fluid may take place on much smaller length
scales than the length scale for the change in the channel width. However, in the case of
constrictions due to the perpendicular fibre bundles the length scale for the fluid distribution and
the change in the channel height may be the same. Hence, the development of a three-dimensional
model would be of greatest interest. Another area of improvement is the boundary conditions at the
walls of the conduit. The results in, for instance, [10] indicates that the velocity at the boundaries is
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somewhat larger than what has been assumed here. It is also clear that the compression model
should be improved in such a way that it takes into account the deformation of the fibre bundles
into the interbundle channels. Such a deformation can certainly affect the permeability of the
fabrics considered.
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