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SUMMARY: For a unidirectional non-crimp stitched glass fabric (also called quasi-UD), we
present experimental results of permeability (saturated and unsaturated values) and a description
of the pore structure using stercology. It is shown that for real fibrous media, the permeability
can be related to the experimentally measured porosity by the well-known Kozeny-Carman
equation in terms of the mean free path through the porous phase within and around the fiber
bundles.
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INTRODUCTION

In the modeling of resin transfer molding process, an abundant literature exists which assimilates
the structure of fibrous preforms with an ideal geometrical arrangement [1,2]. Thus numerical
studies are facilitated and qualitative indications are obtained on the influence of the fibrous
architecture on the macroscopic resin flow. But this kind of approach does not rely on the
microstructural parameters which really characterize the porosity.

The objective of this study is to demonstrate that flow properties within a real fibrous media can
be assessed by mean of microstructural parameters of the porous phase directly attainable from
stereology. The porosity of a unidirectional composite material is first investigated using image
analysis. The permeability for the resin flow parallel to the fibers is then expressed as a function
of porosity and in terms of the characteristics of the porous phase. Finally, a comparison between
the experimentally measured permeability on real fibrous composites and the prediction from the
microstructural characteristics of the porous phase is presented.
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MICROSTRUCTURE ASSESSMENT
Influence of the Stitching

Even for the simple fabric used in this work (UD glass fiber-reinforced polyester), primary
investigations had shown a complex relationship between the geometrical parameters and the
volume fraction of fibers [3]. As can be seen on Figs. 1 and 2, a two-scale microstructure is
observed : the microscale, inside the yarns and the macroscale, between the yarns. That defines a
microporosity and a macroporosity respectively denoted further as p and M. Moreover, the
dispersion of the fibers is not the same near and far away from the stitching yarns. Consequently,
in order to describe the microstructure, a simple geometric model using a regular array of fibers
and/or yarns is unrealistic : a more general microstructural description must be used.
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Fig. 1 : Serial sections through a RTM sample along the direction of fibers (the volume fraction
of glass fibers is 0.55 and the thickness of one layer is approximately 0.45 mm)

Fig. 2 : Two sections through the same yarn : (a) near the stitching, (b) far away from the stitching.
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Mean Free Path through the Porous Phase versus Porosity

For a two-phase material, a general stereological relationship exists between the mean free paths
through each of the two phases [4]. It can be written as L(F)+ L(P)= 1/N, where L(F) and

L(P) are respectively the mean free paths through the fibers and through the pores and N, is the

number of intersections, per unit length, between the fiber/pore interface and a random line of
analysis. Moreover, as the composite is unidirectional, the microstructure observed on a plane
cut perpendicular to the yarns can be analyzed as if it was defined in 2D space : for a random
dispersion of non-overlapping discs of radius r, it can be demonstrated, from geometrical
probabilities, that N, =2r N, , where N, is the number of discs per unit area. It follows that

L(F)= (n/2)r and the mean free path through the porous phase is expressed as a function of the
areal fraction of porosity, A, (P) , by

p)= 2 AP (1)
2 1-A,(P)

This equation is valid, whatever the dispersion of the discs, under the hypothesis that they
possess the same size. It can be extended to non-overlapping ellipses with the same orientation if
r is replaced by the semiaxis, a, of the ellipse (the choice of the semiaxis depends on the direction
of analysis). The application of formula (1) to the microstructure of our UD composite allows to
define mean free paths through the microporosity and through the macroporosity (the yarns are
then modelized as ellipses). The theoretical results are compared, in Figs. 3 and 4, with the
experimental ones measured by image analysis.
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PERMEABILITY ASSESSMENT
Permeability versus Mean Free Path through the Porous Phase

For a 3D porous material, the permeability, K, can be expressed as a function of the porosity,
V,(P), by the classical Kozeny-Carman equation [5]: K=c, [V, (P)]’ / [Sy]?in which ¢, is a
constant and S,, the specific surface of the solid/pore interface (per unit volume of material). But
there is a stereological relationship [4] between the mean free path through the porous phase, the
porosity content and the specific interface area: L(P)=4 V,(P)/S,. The Kozeny-Carman
equation can then be written :

K="¢ L) Vi (P) )

In this equation, the permeability is simply expressed as the product of the volume fraction of the
material accessible to the flow by the square of a characteristic length.

Permeability versus porosity

For the UD composite under consideration, on a plane cut perpendicular to the yarns the areal
fraction of porosity, A, (P), is nothing else but its volume fraction, Vi, (P). Combining equations
(1) and (2), the permeability can then be expressed by
Coﬂ:2 2 AA (P)3 3
r 3 3)
o " T1-A,0)]
This equation can be found in the literature [5] but it is classically obtained via the introduction

of an hydraulic radius. Only stereological relationships have been used here and applied to the
particular case of the UD composite.

K=

RESULTS AND DISCUSSION

Equation (3) can be applied to any homogeneous medium i.e. with a uniform distribution of the
porous phase. But this is not the case for the UD composite under consideration (cf. Fig. 1) hence
the global porosity cannot be used to compute the permeability. Consequently, the contributions
of the microporosity, Aa(P,), and the macroporosity, Aa(Pm), must be calculated separately.
They are related to the global porosity, As(P), by

Ap (P) = A, (PM ) + [1 — A, (PM )]AA (Pu) 4
and thus the macroporosity Py can be derived from the measures of the total porosity, P, and the
microporosity P,. The evolutions of Ax(P,) and Aa(Pm) are reported in Figs. 5 and 6 for
measurements performed near and far away from the stitching yarn. One can observe that, when
the total porosity increases (i.e. the fiber volume fraction decreases) the mean microporosity
remains roughly the same while the mean macroporosity increases.
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Fig. 5 : P, versus global porosity. Fig. 6 : Py versus global porosity.

The permeability K, corresponding to P is calculated using the areal fraction As(P,) and the
fiber radius r: K, = (coat2 / 64) A, (PH)3 / [l-A A (Pp)]2 . The permeability Ky corresponding
to P is calculated using the areal fraction Aa(Pwm) and the semiaxis, a, of the ellipse-shape yarn :
K, = (cOTc2 / 64) a>A,(P,)’/[1-A,(P,) ]’ . For a direction of macroscopic flow parallel to the

fiber bundles, the global permeability of the composite may be expressed as the sum of the micro
and the macro permeabilities weighed by their respective areal fractions :

K= A,((P)K, +A,(Py)K, (5)

The theoretical values calculated from equation (5) are reported in Fig. 7 and compared with the
experimental measurements. The best fit to the experimental results is obtained with Ax(Py) and
Aa(P,) determined near the stitching yarns, for r=8.7 um and a=445 pm. This last value
corresponds to the radius of a disc with an area equivalent to the one of the yarns.
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Fig. 7 : Experimental and calculated results of permeability.
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CONCLUSIONS

The permeability of a stacking of unidirectional glass-fiber fabrics was assessed using
microstructural parameters of the porous phase determined by stereology, and compared with
experimental measurements. The free mean path through the porous phase and fractions of micro
and macroporosity are shown to be the relevant microstructural parameters needed for an
intrinsic determination of the permeability. Such an approach, which might be applied to any
fibrous media, may provide useful information for the numerical simulations of the permeability
and for the analysis of the unsaturated-saturated transition.
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