Effects of Nanoclays and Carbon-Nanotubes on the Flow of Epoxy for Resin Transfer Molding

Ayca Ertekin, Dr. Byron Pipes, Dr. Lloyd Goettler The University of Akron

ABSTRACT

This research focuses on understanding basics of the flow of aerospace epoxy resins, enriched with layered silicates and single wall carbon nanotubes (SWNT), through a porous media via resin transfer molding process. In the first stage of this study, the dispersion and curing of carbon-nanotubes and nanoclays are examined with several rheological (RMS), thermal (DMA), wide angle X-ray diffraction (WAXD) and morphological (SEM and TEM) characterization techniques made under different curing conditions. A dynamic rheometer, Advanced Polymer Analyzer (APA), is also used for characterizing changes in viscosity extent of cure and modulus properties of the epoxynanotube and epoxy-nanoclay mixtures, during curing. The gel-time of epoxy resins, containing nanoclays, presents an upper bound time limit for exfoliation. The changes in cure kinetics, thermal degradation and Raman spectroscopy of the SWNT-epoxy resin composites are also interpreted in terms of extremely high thermal conductivity of carbon nanotubes and the ability of epoxy resin to open and disperse the nanobundles, offering a higher surface for heat propagation. The flow properties of the enriched epoxy-carbon fiber composite systems are obtained by perform permeation measurements using LABVIEW data acquisition system.