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ABSTRACT:  In order to account for the influence of randomness in fiber property on 
the resin flow through fibrous media in mold filling, stochastic simulation method is 
developed for this physical system, based on the spectral stochastic finite element 
method. As examples of application, the variability in resin pressure field in different 
cases of injection strategy is estimated and discussed, providing an idea of randomness 
propagation in liquid composite molding processes. The current work constitutes the 
primary step for stochastic simulation of mold injection process.    
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INTRODUCTION 
 
Permeability field in fiber reinforcement often exhibits high spatial and batch-to-batch 
variation [1], which leads to significant variability in the filling quality of composite 
parts produced by RTM, for instance. However, the randomness in such process has 
only been investigated in a few studies [1, 2] in which the Monte Carlo Simulation 
(MCS) is the only approach. Since the real fiber permeability should be characterized as 
a random field with both local variability and spatial correlation, the Spectral Stochastic 
Finite Element Method (SSFEM) [3], which does not rely on repeated deterministic 
simulations, is more efficient than MCS in the propagation of randomness and 
estimation of the random flow behavior in mold filling. In this paper, a stochastic 
simulation method based on the SSFEM is developed for steady resin flow through 
fibrous media with random permeability field. The formulation and application of this 
method are briefly explained in Sections 2 and 3, respectively, with conclusions given 
in Section 4. 
 
 

STOCHASTIC MODELING OF RESIN FLOW IN FIBROUS MEDIA 
 
In order to introduce the random permeability field  ,xK  (x and   denote the spatial 
and random variables, respectively) into the PDE system of resin flow, the Karhunen-
Loève Expansion (KLE) [3] is applied to approximate  ,xK  in terms of a finite 
number of uncorrelated random variables 
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using  i  and   i x  (i=1~NKL), i.e., the NKL highest eigenvalues and eigenfunctions 

of the covariance of permeability field. The covariance function quantifying both local 
variability and spatial correlation should be fitted from experimental sample data (for 
the moment an empirical form is used in Section 3). Substituting Eqn. 1 into the 
governing equation for resin pressure, and assuming  ,xK  to follow a Gaussian 

distribution so that  i  (i=1~NKL) are standard Gaussian random variables, the 

system of equations ready for applying MCS is obtained 
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In comparison to MCS, the SSFEM is able to solve the stochastic PDE system Eqn. 2 in 
both spatial and random dimensions simultaneously. To achieve this, the solution 
(  ,xp ) is represented by the same set of random variables  i   (i=1~NKL) as in 

Eqn. 1, by means of the Polynomial Chaos Expansion (PCE) [3] 
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where   j  (j=0~Np) are KLN -dimensional polynomial basis (polynomial chaos) of 

order up to P. As both the property and solution random fields are respectively 
discretized in random dimension, Eqn. 2 can be subjected to spatial discretization by 
FEM formulation and rewritten in the form 
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where iiiK   (i=1~NKL) are deterministic KLE coefficients and jp (j=0~NP) the 

unknown PCE coefficients. By means of the Galerkin method, Eqn. 4 is solved by 
forcing the residual to be orthogonal to polynomial chaos basis, resulting in a block-
sparse system of equations 
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from which the nodal PCE coefficients jp  (j=0~NP) are solved by iterative numerical 

techniques. Low order statistical moments of pressure field can be obtained directly 
from the PCE coefficients, and its probability distribution can be estimated from MCS 
of Eqn. 3 with minor computation effort. Similarly, the Darcy’s velocity field can be 
expressed using Eqn. 1 and Eqn. 3 as 
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with  xuij  derived from KLE and PCE coefficients. The statistics of Darcy’s velocity 

field are also important for modeling moving flow front. 
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NUMERICAL EXAMPLES 
 
Application of the current method is briefly illustrated by two examples using the same 
mold model with multiple injection gates and air vents (see Fig. 1). In example 1, gates 
A1~A4 are used as inlets and B1~B4 are outlets, while example 2 is the reverse case. 
The effective permeability (Keff) is assumed as a Gaussian random field with mean value 
1×10-9 m2 and an exponential covariance function [3] with correlation length 0.25m. 
Variability in permeability is quantified by its coefficient of variation (CV(Keff)). The 
mold has thickness of 5mm and fiber volume fraction of 0.3. Resin (with viscosity of 
0.1 Pa·s) is flowing at constant rate of 5×10-6 m3/s (total of all inlets) into the mold. 
 

 
 

Fig.1 Finite element model 
Fig. 2  Normalized mean inlet pressure 

(inlet A1, example 1) 

 
Comparison between Deterministic and Stochastic Pressure Field 
 
Due to the randomness in fiber property, mean pressure at injection gates differs from 
the value predicted by deterministic simulation, as shown in Fig. 2 (mean values are 
normalized by the corresponding deterministic value). For CV(Keff)≤0.25, results from 
the SSFEM coincide well with those from MCS (105 loops), while advantage in 
efficiency is obvious for the former which costs about 48 minutes (order-2 PCE, Intel 
Xeon X5550/2.67GHz) in comparison to 9 hours for MCS (105 loops). This advantage 
will be significant for stochastic simulation of moving flow front. On the other hand, 
MCS may be unable to produce converged results for relatively high variability (e.g. for 
CV(Keff)≥0.3, 105 loops still cannot converge), while the SSFEM is capable for 
CV(Keff)≤0.4. In Fig. 3, distinct differences are observed between the mean pressure 
distribution (CV(Keff)=0.4) and the deterministic case, for both examples. Randomness 
in fiber permeability results in the enhancement of the expectation of pressure 
magnitude all over the mold, most greatly in the neighborhoods of the injection gates. 
 

(a) Deterministic solution for example 1 (b) Mean value of stochastic solution for example 1 
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(c) Deterministic solution for example 2 (d) Mean value of stochastic solution for example 2 

 
Fig. 3  Pressure distribution from deterministic and stochastic simulations (unit: 105 Pa) 
 

  

(a) Probability density function (left: near peak; right: overall shape) 
(inlet A1, example 1) 

(b) Cumulative probability ~ CV(Keff) 
(inlets A1, A3, example 1) 

 
Fig. 4  Probability estimation of inlet pressure 

 
Local Variability in Pressure Field 
 
Since the response field is a random variable at any spatial point, its local variability, 
quantified by standard deviation, probability density function (PDF), cumulative density 
function (CDF), etc., is important for reliability analysis. Fig. 4(a) shows the estimated 
PDF for inlet pressure for CV(Keff)=0.2 and 0.25, respectively. Comparing to MCS (104 
and 2×104 loops), the current method predicts the overall PDF accurately and captures 
the peak region better, especially for relatively high material variability (MCS with 
5×104 loops cannot give correct PDF for CV(Keff)=0.25). Order-3 PCE predicts the peak 
more accurately, but order-2 PCE can be applied in wider range of variability (up to 
CV(Keff)=0.4), which is necessary for realistic fibrous material with high scatter level. In 
application, the CDF (integrated from PDF) is more convenient for estimating the 
probability for a given range of magnitude. For example, given CV(Keff) varying from 
0.05 to 0.4, the probability for inlet pressure (inlet A1 in example 1) not exceeding the 
deterministic value varies from about 0.5 to 0.45, as shown in Fig. 4(b). Other curves 
give the probabilities for its not exceeding the mean value or 1.05 times the 
deterministic value, respectively. 
 
For providing an overall idea of the variability in pressure field in the mold, the 
distribution of CV of pressure are displayed in Fig.5 for CV(Keff)=0.4, for both examples. 
It can be seen that the variability of inlet pressure is much higher in example 2 than in 
example 1. When the stochastic simulation is extended from steady flow to moving 
flow front case, the injection gates are usually opened progressively, and local 
variability can have significant influence on the filling pattern and other variables. 
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Therefore, the statistical information obtained from the current method is useful for 
reliability analysis in the design of mold and injection strategy.  
 

 
(a) Example 1 (b) Example 2 

 
Fig. 5  Distribution of variability in pressure field 

 
 

CONCLUSIONS 
 
As the first step of modeling the mold injection process involving randomness in 
materials and manufacturing conditions, stochastic simulation of steady resin flow in 
random permeability field is treated in this paper. The current method, based on the 
SSFEM, provides a more efficient numerical tool than MCS for predicting the 
expectation and local variability of flow response resulted from random fiber property. 
  
The influence of uncertainty on the pressure field is illustrated by simple examples. 
These results are important for estimation of the realistic pressure magnitude at the 
injection gates, in order to determine the correct holding pressure on the mold during 
injection. Besides, they are useful for designing the mold configuration (e.g., numbers 
and position of inlets and outlets) in purpose of reducing the influence of material 
randomness.  
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