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ABSTRACT:  Fluid flow-induced alteration of the permeability regarding deformable 

systems of fibres is studied. When considering the elastic deformations of the fibre 

bundles they are founded on the structure of non-crimp fabrics. Transversal flow 

through random arrays of aligned fibres is considered by using a combined methodology 

of directly solving the two-dimensional Navier-Stokes equations for the flow in the 

vicinity of a single fibre and minimisation of the dissipation rate in a system of fibres. 

The permeability of random arrays of a large number of fibres increases but it can also 

decrease but then for structured or small systems. 
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INTRODUCTION 

 

We here model low Reynolds number flow of a viscous fluid through fabrics that have 

been formed by stitching bundles of fibres together. This flow takes place on two scales 

within the fibres bundles and between them. Of particular interest is how the fibres and 

the fibre bundles deform and redistribute changing as well the detailed flow field as the 

overall permeability. This is especially important in composites manufacturing with 

liquid moulding processes such as Resin Transfer Moulding and Vacuum Infusion 

where relatively high pressure gradients drive the fluid flow and the properties of the 

final composite are crucially dependent on the orientation and distribution of the fibres. 

The Stokes drag forces generated by the flow results in elastic deformations that are 

only of importance during processing but may also result in permanent plastic 

deformations that will affect the final properties. 

 

Since the systems to be modelled consist of a large number of fibres, a combined 

approach is applied where the system is discretized using modified Voronoi diagrams 

and the solutions of the Navier-Stokes equations are applied for each part of the 

division. Then these small parts are combined into a complete system using the fact that 

the distribution of velocity obeys the principle of minimal dissipation rate of energy, i.e., 

by minimising the dissipation rate of energy we obtain a linear system of equations with 

respect to the stream function. Afterwards, the local change of the stream function gives 

the required stresses for each sector of a fibre and thus the total force and momentum 
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given to a fibre leading to redistribution of the fibre structure in the medium [1]. In 

order to properly study statistical effects of permeability alterations to the system should 

consist of a large number of unequal fibres with an arbitrary distribution because the 

change in the overall permeability is a many body effect [2]. Solving the flow in such a 

system directly becomes too computational heavy. Berlyand and Panchenko [3] 

proposed a discrete methodology aimed at finding the effective viscosity of a two-

dimensional random array of equal sized fibres using Delaunay triangulation and 

minimising dissipation rate afterwards. Our approach is in many aspects similar with the 

major differences that the local analysis of the flow through single gaps between 

neighbouring fibres is treated differently and focus is set on the deformation of fibres. 

 

 

DISCRETIZATION AND MINIMISATION OF DISSIPATION RATE 

 

Two-dimensional system of fibres is considered.  Assuming that the fibres themselves 

are impermeable, the stream function for the surface of each fibre is constant ψ=ψi, 

where i=1…n is the index of the fibre. The difference in the stream function between 

any two fibres is just the flow rate in the gap between the two fibres in question. In order 

to derive this distribution the system is divided into n parts, so that each part contains 

one fibre. We use a modified version of the Voronoi diagrams consisting of straight 

lines also for fibres with unequal size [1] for that purpose. The value of the stream 

function and the vorticity )( ψω ×∇×∇=  between fibres i and j are ψij0 and ωij0, 

respectively, at the crossing with the Voronoi lines (see Fig. 1). The quadratic average 

of vorticity in the area Sij at fibre i adjacent to fibre j is 
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where Aij, Cij emanates from the average vorticity in a small area Sij; dij0 is the distance 

between fibre i and the Voronoi line that separates fibres i and j; ∼ denotes the case of 

equal sized fibres i and j. The total dissipation rate of energy approaches a minimum, 

[3]. So, the following integral is calculated over the total area should be minimised: 

∫=Φ dS2

2
1][ ωµψ , µ is viscosity. The integration can be discretized with use of Eqn. 1 

over all of the triangles. Afterwards, the total sum must be minimized with respect to the 

stream functions ψi and middle values ψij0, ωij0. The obtained system of equations can 

be solved by the use of traditional methods for sparse linear systems of equations. 

 

The total force on the fibre can be expressed by means of vorticity near the fibre by 

accounting for the viscous and normal forces according to: 
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where Bij is a dimensionless variable characterising the ratio between the average 

vorticity along the arc at the border of the fibres and difference of the stream function at 

the positions indicated, see Fig. 1b. The sum of all drag forces equals the driving 



The 10
th

 International Conference on Flow Processes in Composite Materials (FPCM10) 

Monte Verità, Ascona, CH – July 11-15, 2010 

pressure difference if wall effects are neglected. Hence, the permeability K follows from 

Darcy law: [ ]∑∑=
ij iji i SµfKv . 

 

a)  b)  

Fig. 1  a –Modified Voronoi diagrams (solid), Delaunay triangles (dashed), and small 

triangles (dotted). b – Voronoi diagram between three particles. 

 

The dimensionless variables A, B, C Eqn. 1-2 are obtained from simulations with 

Computational Fluid Dynamics (CFD) performed with ANSYS CFX 11.0. The 

simulations are carried out with boundary conditions representing a well structured 

repeatable material with varying geometry [1]. The obtained values for A, B, C slightly 

differ for rectangular and hexagonal packings. Therefore, the system is analysed locally 

to see which packing is most representative, see Fig. 1. 

 

 

ELASTIC DEFORMATIONS OF FIBRE BUNDLES 

 

For composites that consist of fibre bundles, the flow-induced motion of fibres is 

restricted mostly by elastic deformations of the fibre networks. Let us consider the fibres 

as long trees in dense forest. The root of the tree is attached to the ground whereas the 

upper part of the tree shifts in the strong wind. The elastic force that opposes the wind 

force is just Hooke's law: )( iii

R

i k RRf −′−= , where iR  and iR′  represents the new and 

original position of tree i, respectively. In order to account that slender trees bend easier, 

the spring constant is set proportional to the cross-sectional area of the tree: 0

2krk ii π= . 

We can define a dimensionless pressure gradient u, i.e., the pressure gradient with 

respect to the elastic force when the fibres are shifted by a distance of 0r  in the flow 

direction resulting in substantial change of permeability: [ ])1()( 000 Π−∇= rkPu . 

 

The exact calculation of deformation of fibre bundles is rather complicated. Therefore, 

the system is significantly simplified assuming that the bundles are stitched together 

with distance l0 between the stitches. For a perpendicular flow there are three important 

cases: stretched fibres, non-stretched thin or thick fibres. According to [4], the 

mechanism for non-stretched thick fibres dominates for fibres with radius above 10 µm. 

The corresponding solution for the transversal disposition y of the fibre is: 

( )Erlzzfzy 42

0

2 6)()( π−= , where E is Young modulus, f – flow-induced linear force 

density. The average shift has a linear dependency on the force leading to the following 

expression for non-dimensional pressure gradient 
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If l0 = 0.01 m, r = 10 µm, |∇P| = 10
5
 Pa/m, E = 10

11
 Pa, then the non-dimensional 

pressure gradient becomes u = 0.025. At such a u the influence of flow induced change 

of permeability is about 5 %. 

 

 
Fig. 2  Left: flow-induced forces on fibres for the flow directed upwards in the figure. 

Right: redistribution of fibre positions. Hollow circles – original position, filled circles – 

deformed position. Centre-top: zoomed-in fragment of the right figure. 

 

 

RESULTS 

 

A fully periodic box is used to avoid wall 

effects. This implies that the total porosity is 

fixed unless the size of the system is changed. 

The orientation of the main stream can be 

arbitrary. The initial positions of the fibres in 

the system are introduced randomly. 

Metropolis algorithm with simulated annealing technique is applied to study the motion 

of fibres where the jump probability depends on the change of energy with this jump. 

The stochastic distribution of fibres does not only influence the permeability but also 

result in that the forces fi on the individual fibres are generally not directed along the 

main stream and differ in strength, Fig. 2 left. It is interesting to check the deformations 

near the bundle boundaries, Fig. 3, but the calculations revealed no significant alteration 

on boundaries by the parallel flow, Fig. 2 right. Therefore, the analysis of the bulk of the 

bundle is sufficient for bundles with 1000 or more fibres. Despite the relative shift of 

fibres is small, Fig. 2 right and centre-top, the change in permeability is essential. These 

fluid-induced deformations in randomly packaged system result in an almost linear 

increase of permeability with the flow rate up to u=0.1 meaning that uKK β≈∆ 0  (see 

Fig. 4 left) with a positive constant 12 ±≈β  for porosity ranging from 0.25 to 0.35 [1]. 

Moreover, the role of gap as in Fig. 2-3 is minimal. If u = 0.025, then increase of 

 
Fig. 3  Experimental cross-section of 

fibres in bundles 
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permeability is ~ 5 %. But the change becomes much higher for higher pressure 

gradients, thinner fibres or more compliant or weaker stitching within the fabric. 

Permeability is lower for more compact systems (see Fig. 4 right) that can lead to more 

rapid alteration of permeability with flow-induced deformations. 
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Fig. 4  a) Increase of permeability with flow-induced deformation for equal sized with 

and without gap and non-equal sized fibres for a random system of ~2000 fibres. b) non-

deformed transversal permeability vs. porosity [1]: squares – obtained results, solid – 

Gebart 1992, dashed – Westhuizen&Plesis 1996, dotted – Sangani&Yao 1988. 

 

 

CONCLUSIONS 

 

CFD simulations of unit cells of porous media combined with minimisation of 

dissipation rate of energy of a large system is found to be an effective tool to study flow-

induced statistical variations in permeability through randomly packed systems – 

namely fibre bundles. The permeability of large random arrays increases especially for 

compact systems with equal size of the fibres. The increase of bundle permeability 

becomes important for pressure gradients exceeding 10
5
 Pa/m. The influence of inflow 

and outflow regions is negligible in overall change of porosity for parallel flow. 
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