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Introduction 
Liquid Composite Molding (LCM) constitutes an important set of technologies for manufacturing 

polymer composites that include processes such as Resin Transfer Molding (RTM), Vacuum-Assisted 
Resin Transfer Molding (VARTM), etc. Several simulations of the LCM mold-filling processes have 
been developed by companies and academic institutions to reduce the LCM mold-design time.  

There have been several studies/simulations involving sink effect as well as void formation in 
dual-scale fabrics that required modeling of microscopic flows in tows using Darcy’s law, which in 
turn required estimating the tow permeability. Researchers have used theoretical models, such as the 
Gebart’s model, for this purpose which often assume that the fibers are arranged parallel to each other 
in perfect square or hexagonal arrays. However, what is surprising is that despite being used so widely 
over last several decades, these models have never been tested for their accuracy by comparing their 
predictions with the permeability measured at the tow level using experiments.  

In the current investigation, the permeability of glass-fiber tow at three different fiber-volume-
fractions (60%, 55%, 50%) have been obtained by using different methods. The permeability of such 
porous media is determined by: a) an experimental method adapted for such tow-scale systems, b) 
theoretical models available in literature, and c) numerical simulations based on solving Stokes flow 
and Whitaker’s closure formulation equations. The results derived from all these methods have been 
compared to find the degree of accuracy and agreement among them. 

Permeability estimation methods 
Theoretical models 
The theoretical models for tow permeability are strong functions of fiber diameter and fiber 

volume fractions. The bundles/tows are often idealized as stacks of aligned parallel fibers which create 
a transversely-isotropic porous medium. The permeability models tested in our investigation are the 
models developed for the flow axial to parallel fibers (models by Berdichevski and Cai, and Gebart) 
and the models for the flow transverse to parallel fibers (models by Berdichevski and Cai, Gebart, and 
Bruschke and Advani). 

Numerical simulation methods for permeability estimation 
a. Stokes flow simulation (GeoDict) 

Since we are interested in slow creeping flows through a porous medium, the particle-based 
Reynolds number has to be less than 1. In this such flow regime, the inertia terms in the Navier-Stokes 
equation can be neglected and the resulting Stokes equation representing momentum-balance is solved 
using a commercial software GeoDict popular in the geoscience area. Unit cells are created by 
randomly distributing aligned fibers (of measured average diameters) within the cells.   
   

b. Closure formulation (COMSOL) 
The formulation developed by Whitaker, based on the volume averaging method as employed to 

derive Darcy’s law, is used for numerically estimating the tow permeability. The great advantage of 
the formulation being that the full permeability tensor can be obtained from a single simulation in the 
above mentioned unit cells. One solves the boundary value problem consisting of the transformed 

‘momentum’ equation −∇𝑑𝑓 + ∇2𝐷𝑓 + 𝐼 = 0 and ‘continuity’ equation ∇. 𝐷𝑓 = 0. The closure tensor 

variable Df used in the transformation is first estimated within the unit cell by solving the closure 
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formulation as given by this boundary value problem. One can then estimate the permeability tensor, 

K, using the intrinsic phase-averaging relation K = 𝜀𝑓〈𝐷𝑓〉
𝑓. We solved the closure formulation using 

the multiphysics software COMSOL. 

Experimental Method 
For our glass-fiber tows, we choose to apply an adapted falling-head method to measure the 

permeability. The falling-head method is based on the flow of a liquid through a prepared sample of a 
bundle which is connected to a graduated duct. The setup is held vertical to enable the gravity-driven 
liquid flow through the porous bundle either axially or transversally. As the head at the inlet decreases, 
the inlet pressure driving the flow decreases with time. The duct is filled with a test liquid that has its 
density and viscosity measured. If the initial height of the liquid column in the burette is h1 at time t = 
t1, and the height reduces to h2 at the end of the experiment at time t = t2, then the permeability of the 

bundle, K, can be estimated through the formula K =
𝜇𝑎𝐿

𝜌𝑔𝐴(𝑡2−𝑡1)
ln

ℎ1

ℎ2
 where A is the cross-section area 

of the bundle sample while a is the cross-section area of the duct.  

Result and Discussion Here the x and y axes are the two perpendicular directions transverse to the 
tow axial direction, the z axis. 

FLOW ALONG TOW AXIS 
As can be seen from Table 1, a remarkable closeness can be seen between the permeability 

predictions by the two numerical methods, and the experimental results. It is to be remembered that 
getting a match with in an order of magnitude is often considered quite creditable in any permeability 
study. Hence this effort of ours to simulate the permeability along the fibers can be considered to be 
quite accurate. However, surprisingly, the permeability obtained from the theoretical models is one 
order of magnitude greater than the numerical and experimental results.  

FLOW TRANSVERSE TO TOW AXIS 
First the permeability in the two transverse directions are obtained from the numerical methods 

and the analytical models, and later they are compared with the experimental values in Table 2. We 
observe that the K values predicted by the three analytical models (Berdichevski and Cai, Gebart, and 
Bruschke and Advani) are again rather lackluster—they are more than twice the experimental and 
numerical K values, though they achieve parity in the orders of magnitude. This time the Stokes flow 
simulation is more accurate than the closure formulation one.  It is heartening to note that most of the 
models, whether numerical or analytical, furnish permeability values that fall within an order of 
magnitude of the experimental results. It is also worth noting that the transversal Kx and Ky values are 
fairly close to each other, as it should be.  

An important takeaway from this research has been the good accuracy of the two numerical 
methods used to estimate the fiber-tow permeability. Also, this study highlights the need to develop 
more accurate analytical models for permeability for flow along the fibers in fiber-bundles and -tows. 
It also seems that microscopic effects such as fiber clustering and fiber length-wise crookedness need 
not be considered explicitly for enhancing the accuracy of the tow-scale permeability models. 

Table 1: For flow along the tow axis, the permeability (K) values (Units: 10-11 m2) obtained from 
the numerical simulations and theoretical models are compared with those from the experiments. 

 
Table 2: For flow transverse to the tow axis, a comparison of the permeability values (Units: 10-12 

m2) obtained from the numerical simulations and theoretical models with those from the experiment. 
The fiber volume fractions are of the same values and order as listed in Table 1. 

 

 

 Kz(Stokes flow) Kz(Closure)  Kz (Experiments) Berdichevski and Cai Gebart 

Fvf = 60% 1.09 1.2 2.09 35.6 18.6 

Fvf = 55% 1.48 1.8 2.09 58.7 31.5 

Fvf = 50% 3.29 2.67 5.65 94.5 52.3 
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Gebart Berdichevski 
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Bruschke –Advani 

Square unit cell 

Bruschke –Advani 

Hexagonal unit cell 

0.1 0.59 0.51 0.26 0.33 1.33 1.92 1.37 0.79 

0.69 1.64 1.78 0.58 0.65 2.27 3.25 2.11 1.21 

1.18 3.15 3.35 1.11 1.38 3.75 5.35 3.11 1.79 


