FIBROUS REINFORCEMENT MICROSTRUCTURE EVOLUTION DURING THE INFUSION PROCESS: EXPERIMENTAL CHARACTERIZATION WITH CT-SCAN

J. Hemmer^{1,2*}, T. Savart², A. Babeau², C. Burtin¹, C. Binetruy¹, S. Comas-Cardona¹

¹ GeM Institute, UMR CNRS 6183, Ecole Centrale de Nantes, 1 rue de la Noë, 44321 Nantes Cedex 3, France. ² CANOE, Cheminnov 2 – ENSCBP, 16 avenue Pey Berland, 33600 Pessac, France. *Corresponding author (julie.hemmer@ec-nantes.fr)

Keywords: infusion process (VARTM); compaction; microstructure; X-ray tomography.

Introduction

Composites manufacturing using the infusion process (VARTM) involve a decompaction phenomenon due to the vacuum bag flexibility [1]. For structural parts, woven or non-crimp fabrics are mainly used and exhibit a double-scale flow during their impregnation by a liquid resin. Previous studies modelled and simulated both the double-scale flow and the evolution of the compaction state, assuming that the fibrous preform is a continuous medium with a varying permeability ([2], [3]). Nonetheless, a detailed knowledge of the fabric microstructural morphology is essential because it impacts intra-tow and inter-tow permeabilities [4], and then, for instance, composites part filling time.

This study proposes an experimental methodology to quantify at macro-scale (stack scale) and meso-scale (tow scale) the evolution of a same fibrous microstructure under several compaction states.

Experimental method

A controlled level of vacuum (60 mbar) is applied in a cavity where five plies of quasiunidirectional non-crimp glass fabric are previously laid down (Figure 1a, dry state). A 1D continuous flow of glycerol is then maintained along the fibers direction, leading to a decompaction phenomenon near the fluid inlet (Figure 1a, saturated state). For each compaction state, two 3D images of the microstructure are recorded: the first one near the fluid inlet and the second one near the vacuum vent.

Figure 1: *a)* Experimental protocol. b) Sketch of the set-up for in-situ infusion in the X-ray CT. *c)* A cropped slice (YZ plane) extracted from the X-ray CT 3D reconstruction at X=10 mm, near the fluid inlet, at dry state.

To implement this experimental procedure, a set-up is developed to realize in situ downsized infusion inside the X-ray CT device (Figure 1b). A PVC plate is dimensioned to respect the geometric constraint imposed by the X-ray CT device. To ensure tightness, a double vacuum circuit is adopted. A bagging strategy was previously validated to limit boundary effects (not detailed here).

The obtained 3D reconstructions (Figure 1c) have a field of view (40x40x40mm³) large enough to measure the macro-scale decompaction. For dry and saturated states, 11 slices (YZ plane, see Figure 1c) along X axis are selected. For each slice, the vacuum bag detection allows the definition of an average stack thickness. Moreover, the resolution of the obtained images (10 μ m³/voxel) is sufficient to detect precisely the boundary of each tow. A slice (YZ plane) near the fluid inlet is analyzed, and an image-processing algorithm including edge detection [5] is applied to compute tow areas.

Results and discussion

In the following section, the deformation is defined as (1):

$$\Delta H_i = \frac{h_i^{saturated} - h_i^{dry}}{h_i^{dry}} \tag{1}$$

where *i* stands for *macro* or *meso*, h_{macro} is the stack thickness, h_{meso} is the tow area.

At macro-scale, the fluid flow induces a thickness variation gradient along the X-axis (Figure 2a). It validates the ability of the set-up to reproduce and record the decompaction phenomenon within constrained area of the X-ray CT device. Near the fluid inlet (X=0.08), extracted microstructures at dry and saturated states (Figure 2b) highlight a decompaction gradient along the thickness (Z-axis): the tow displacement is higher near the vacuum bag. Nonetheless, the tows deformation, occurring along the Z-axis, is comparable (Figure 2c) for tows located near the vacuum bag and near the PVC plate.

The set-up, whose efficiency is validated at macro-scale, allows a novel quantification of the decompaction phenomenon at meso-scale. Tows deformations and displacements within the stack, occurring mainly along the Z-axis (negligible movements and deformations are recorded along the Yaxis), drastically reorganize the fibrous reinforcement microstructure.

Figure 2: a) Macro-scale decompaction along X-axis (flow direction). b) Superposition of dry (black) and saturated (pink) post-treated microstructures at X=0.08. c) Superposition of dry (white) and saturated (pink) extracted from b).

Acknowledgements

The authors would like to thank CANOE for their financial support so as the funding provided by the French ANRT by grants under CIFRE funding program.

References

- B. Yenilmez, M. Senan, E. M. Sozer "Variation of part thickness and compaction pressure in vacuum infusion process", [1]
- Composites Science and Technology Vol. 69, pp. 1710–1719, 2009. J. Acheson, P. Simacek, S. Advani "The implications of fiber compaction and saturation on fully coupled VARTM Simulation", Composites Part A: Vol. 35, pp. 159–169, 2004. [2]
- [3] M. S. Rouhi, M. Wysocki, R. Larsson "Modeling of coupled dual-scale flow-deformation processes in composites Manufacturing", Composites: Part A Vol. 46, pp. 108-116, 2013.
- B. Caglar, L. Orgéas, S. Rolland du Roscoat, E. Murat Sozer, V. Michaud "Permeability of textile fabrics with [4] spherical inclusions", Composites Part A: Applied Science and Manufacturing Vol. 99, pp. 1–14, 2017.
- FeatureJ: ImageJ [5] E. Meijering. an plugin suite for image feature extraction. https://imagescience.org/meijering/software/featurej/, 1996-2017.