FTIR spectral bands for natural fibres

Table 1: FTIR spectral lines of natural fibres
* for dichroic bands, the notation is ° (non-dichroic), ∥ (parallel) or ⊥ (perpendicular)
* for fibres without/with dislocations, the wavenumbers are outside/within brackets respectively
* for the various motions of atoms within the normal modes, the notation is  δ bending;  ν stretching;  ρ rocking;  τ torsion;  ω wagging.

Wavenumber (cm-1) Vibration Sources
3600-3100 Intra- and inter-molecular hydrogen bonding of OH stretching in cellulose and hemicelluloses flax, hemp, jute, sisal [10]
3350 OH stretching (H bonded) jute [3]
3336 OH stretching cellulose, hemicellulose [1]
~3335 {3300} ν (OH) free ∥ [7, 8]
3327 (3332) OH stretching hemp [2]
3300 OH linked shearing hemp polysaccharides [6]
3200-3600 OH stretching jute [4]
2955 CH stretching of cellulose and hemicellulose flax, hemp, jute, sisal [10]
2935 CH stretching of cellulose and hemicellulose flax, hemp, jute, sisal [10]
2922 C-H vibration (doublet with 2854) replacing single band at 2900 on depolymerisation flax [9]
2900 C-H stretching in methyl and methylene jute [3, 4]
~2900 ν (C-H) ⊥ [7, 8]
2887 C-H symmetrical stretching cellulose, hemicellulose [1, 4]
2885 C-H symmetrical stretching hemp polysaccharides [6]
2883 (2882) C-H symmetrical stretching hemp [2]
2862 CH2 stretching of cellulose and hemicellulose flax, hemp, jute, sisal [10]
2854 C-H vibration (doublet with 2922) replacing single band at 2900 on depolymerisation flax [9]
2850 CH2 symmetrical stretching hemp wax [6]
~2850 ν(CH2) symmetrical stretching (non-dichroic °) [7, 8]
1750 shifted carbonyl band flax aged with Penicillium corylophilum [9]
1740 C=O stretching vibration (disappears after treatment) jute hemicelluloses [4]
1735 C–O stretching in carbonyl and unconjugated β-ketone jute [3]
1735 C=O stretching acetyl or carboxylic acid flax, hemp, jute, sisal [10]
~1735 ν(C=O) ester [7]
1732 C=O unconjugated hemp xylan hemicellulose [6]
1730-1733 present in untreated fibre, not in NaOH treated fibres, reappears with MPP treatment jute [5]
1729 C=O stretching vibration pectin, waxes [1]
1724 (1724) C=O stretching vibration hemp [2]
~1635 adsorbed water [7, 10]
1630-1650 OH in water water [6]
1623 OH bending of absorbed water water [1]
1623 (1624) OH bending of absorbed water hemp [2]
1595 aromatic ring in lignin (exclusively in jute spectrum) jute [10]
~1595 ν(C=C) aromatic in-plane [7]
1506 C=C aromatic symmetrical stretching lignin [1]
1506 (disappear) C=C aromatic symmetrical stretching hemp [2]
1505 C=C aromatic symetrical stretching hemp lignin [6]
~1505 ν(C=C) aromatic in-plane [7]
1502 aromatic ring in lignin (exclusively in jute spectrum) jutel [10]
~1475 δ(CH2) scissoring [7]
1460 OH in plane bending flax, hemp, jute, sisal [10]
1455 C–H deformation and CH2 bending jute [3]
~1455 δ(C-H); δ(C-OH) primary and secondary alcohol [7]
1432 CH3 asymmetric deformation jute lignin [4]
1425 CH2 symetrical bending C=C stretching in aromatic groups hemp (pectin. lignin, hemicelluloses, calcium pectates) [6]
1425 Carboxylic acid and COO- vibration flax, hemp, jute, sisal [10]
1423 HCH and OCH in-plane bending vibration cellulose [1]
1423 (1423) HCH and OCH in-plane bending vibration hemp [2]
~1420 {1425} δ(C-H) ∥ [7]
1376 C-H symmetric deformation jute lignin [4]
1375 CH bending of cellulose and hemicellulose flax, hemp, jute, sisal [10]
1370 C–H deforming (asymmetric) jute [3]
1370 In-the-plane CH bending hemp polysaccharides [6]
1368 In-the-plane CH bending cellulose, hemicellulose [1]
1368 (1367) In-the-plane CH bending hemp [2]
1363 (1363) In-the-plane CH bending hemp [2]
~1365 {1370} δ(C-H) ∥ [7, 8]
1362 In-the-plane CH bending cellulose, hemicellulose [1]
1335 C-O aromatic ring hemp cellulose [6]
1335 OH in plane deformation flax, hemp, jute, sisal [10]
~1335 {1355} δ(CH2) wagging ∥ [7, 8]
1325 (1325) S ring stretching hemp [2]
1320 overlapping of 1335 and 1315 bands due to hydrolysis flax inoculated with Fomes fomentarius [9]
1317 CH2 rocking vibration cellulose [1]
1315 CH2 wagging of cellulose and hemicellulose flax, hemp, jute, sisal [10]
~1315 δ(C-H) [7]
1314 (1313) CH2 rocking vibration at C6 hemp [2]
~1280 δ(CH2) twisting ∥ [7, 8]
1275 Lignin (jute and sisal spectrum) flax, hemp, jute, sisal [10]
1259 (1261) G ring stretching hemp [2]
1250 C-O stretching in acetyl groups (disappears after treatment) jute hemicelluloses [4]
1246 C=O and G ring stretching lignin [1]
1245 (1244) C-C plus C-O plus C=O stretch; G condensed > G etherified hemp [2]
1245 C-O of acetyl (hemicelluloses or pectin) flax, hemp, jute, sisal [10]
1240-1241 present in untreated fibre, not in NaOH treated fibres, reappears with MPP treatment jute [5]
1240 C-O aryl group hemp lignin [6]
~1235 δ(C-OH) out-of-plane [7]
1232 (1231) C-O-H bending at C6 hemp [2]
1230-1240 C–O stretching in acetyl group jute [3]
1204 (1199) C-O-C symmetric stretching, OH plane deformation hemp [2]
1202 C-O-C symmetric stretching cellulose, hemicellulose [1]
1200 OH in plane bending flax, hemp, jute, sisal [10]
~1200 δ(C-OH); δ(C-CH) [7]
1162 C-O-C asymmetrical stretching hemp cellulose and hemicellulose [6]
1155 C-O-C asymmetrical stretching cellulose, hemicellulose [1]
~1155 {1160} ν(C-C) ring breathing, asymmetric ∥ [7, 8]
1152 (1156) C-O-C asymmetrical stretching hemp [2]
1150 anti-symmetrical deformation of the C-O-C band flax, hemp, jute, sisal [10]
1125-895 C-O stretching and ring vibrational modes flax, hemp, jute, sisal [10]
~1105 ν(C-O-C) glycosidic [7]
~1050 {1060} ν(C-OH) secondary alcohol (non-dichroic °) [7, 8]
1048 C-C, C-OH, C-H ring and side group vibrations cellulose, hemicellulose [1]
1046 (1043) C-C, C-OH, C-H ring and side group vibrations hemp [2]
1030 Aromatic C-H in plane deformation jute [3]
~1025 ν(C-OH) primary alcohol [7]
1020 (1018) C-C, C-OH, C-H ring and side group vibrations hemp [2]
1019 C-C, C-OH, C-H ring and side group vibrations cellulose and hemicellulose [1]
~1005 ρ(-CH-) [7]
995 C-C, C-OH, C-H ring and side group vibrations cellulose and hemicellulose [1]
994 (996) C-C, C-OH, C-H ring and side group vibrations hemp [2]
~985 ρ(-CH-) [7]
900 decreased intensity with increased crystallinity cotton, flax, hemp [9]
900 characteristic of β-links in cellulose flax, hemp, jute, sisal [10]
896 C-O-C,C-C-O and C-C-H deformation and stretching cellulose [1]
895 (894) C-O-C, C-C-O, C-C-H deformation and stretching hemp [2]
895 glycosidic bonds hemp polysaccharides [6]
~895 ν(C-O-C) in plane, symmetric [7]
830 Aromatic C–H out-of-plane vibration jute [3]
700-650 OH out of plane bending flax, hemp, jute, sisal [10]
670 C-OH out-of-plane bending bast [6]
662 (663) C-OH out-of-plane bending hemp [2]
662 C-OH out-of-plane bending cellulose [1]
     

References

  1. D Dai and M Fan, Characteristic and Performance of Elementary Hemp Fibre, Materials Sciences and Applications, December 2010, 1(6), 336-342.
  2. M Fan, D Dai and B Huang, Fourier Transform Infrared Spectroscopy for natural fibres, Chapter 3 in S Salih (editor): Fourier Transform - Materials Analysis, InTech, Rijeke – Croatia and Shanghai – China, 2012, 45-68.  ISBN: 978-953-51-0594-7.
  3. E Sinha and SK Rout, Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite, Bulletin of Materials Science,, February 2009, 32(1), 65–76.
  4. GB Nam, JW Kim, JM Byeon, BS Kim, TK Kim and JI Song, Effect of surface treatment on mechanical behavior of jute-fiber reinforced polyopropylene (sic) composite, 18th International Conference on Composite Materials (ICCM), Jeju Island - Korea, 21-26 August 2011.
  5. XY Liu and GC Dai, Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites, eXPRESS Polymer Letters, 2007, 1(5), 299–307.
  6. M Le Troëdec, C Peyratout, T Chotard, JP Bonnet, A Smith and R Guinebretière, Physico-chemical modifications of the interactions between hemp fibres and a lime mineral matrix: impacts on mechanical properties of mortars, In JG Heinrich and G Aneziris (editors): 10th International Conference of the European Ceramic Society, Berlin - Germany, 17-20 June 2007. Göller Verlag, Baden-Baden - Germany, pp 451-456.  ISBN 3-87264-022-4.
  7. P Garside and P Wyeth, Identification of cellulosic fibres by FTIR spectroscopy: thread and single fibre analysis by attenuated total reflectance, Studies in Conservation, 01 December 2003, 48(4), 269-275.  Soton eprints.
  8. P Garside and P Wyeth, Identification of Cellulosic Fibres by FTIR Spectroscopy: differentiation of flax and hemp by polarized ATR FTIR, Studies in Conservation, 01 January 2006, 51(3), 205-211.
  9. K Kavkler and A Demšar, Application of FTIR and Raman spectroscopy to qualitative analysis of structural changes in cellulosic fibres, Tekstilec, 2012, 55(1), 19–31.  ISSN 0351-3386.
  10. A Célino, S Fréour, F Jacquemin and P Casari, Characterization and modeling of the moisture diffusion behavior of natural fibers, Journal of Applied Polymer Science, 2013, 297-306.

Created by John Summerscales on 06 June 2014 and updated on 30-Mar-2017 16:04. Terms and conditions. Errors and omissions. Corrections.