Probability plotting positions/estimators Lecture
PowerPoint
Reading
Lists
Review
papers
Subject
Index

All plotting positions return crude estimates of the unknown probabilities associated the studied events.  The principal estimators are presented in the Table below.
Name Probability estimators
Adamowski (1981) [3] i - 0.25
n + 0.25
APL [1] i - 0.35
n
Beard (1943) [1-3]  i - 0.3175 
n + 0.38
Blom (1958) [1-3]  i - 3/8 
n + 1/4
California (1923) [2-3]  i 
n
Chegodayev (1955) [2-3] i - 0.3
n + 0.4
Cunnane (1978) [1-3] i - 0.4
n + 0.2
Filliben (1975) i - 0.3175
n + 0.25
Gringorten (1963) [1, 2] i - 0.44
n + 0.12
Hazen (1914) [1-3] i - 0.5
n
Nguyen et al (1989) [1]       i -0.42      
n + 0.3γ + 0.05
Tukey (1974) [2] i - 1/3
n + 1/3
Weibull (1939) [1-3]   i  
n + 1

References

  1. A Shabri, A comparison of plotting formulas for the Pearson Type III distribution, Jurnal Teknologi (Universiti Teknologi Malaysia), June 2002, 36(C), 61–74.
  2. AS Yahaya, CS Yee, NA Ramli and F Ahmad, Determination of the best probability plotting position for predicting parameters of the Weibull distribution, International Journal of Applied Science and Technology, March 2012, 2(3), 106-111.
  3. Statistical techniques for data analysis, Chapter 4 in SK Jain and VP Singh, Water Resources Systems Planning and Management (Developments in Water Science), Elsevier Science, Amsterdam, 2003.  ISBN 0-444-51429-5.

Created by John Summerscales on 02-Apr-2016 and updated on 02-Apr-2016 15:09. Terms and conditions. Errors and omissions. Corrections.