LCA quantified environmental impacts. |
Superscript letters below refer to footnotes to the Tables.
The ILCD Handbook analyses the environmental impact assessment methodologies for use in Life Cycle Assessment [1]. Life Cycle Assessment (LCA) generates data across a number of environmental impacts. The categories used in the ReCiPe2016 method are given in a paper by Huijbregts et al [2].
Reinforcements
Impact Category | Units | Glass fibre La Rosa [3-5] |
Glass fibre Le Duigou [6] |
|
---|---|---|---|---|
Reinforcement | HP_MP600E random mat | |||
Abiotic depletion | ADP | kg Sb eq. | 0.02 | 0.019 |
Acidification Potential | AP | kg SO2 eq | 0.017 | 0.016 |
Eutrophication potential | EP | kg PO4 P-lim. eq | 0.04 | 0.0012 |
Cumulative Energy Demand | CED | MJ eq | 51.3 | 45 |
Global Warming Potential | GWP | kg CO2 eq | 2.95 | 2.65 |
Ozone layer Depletion Potential | ODP | x10-9 kg CFC11 eq | 249 | 200 |
Photochemical Oxidant Creation Potential | POCP | kg C2H2 eq | ~ | 0.0006 |
Human Toxicity Potential | HTP | kg 1,4-DB eq | 9.52 | 9.1 |
Freshwater Aquatic Ecotoxicity Potential | FAETP | kg 1,4-DB eq | 0.684 | 0.17 |
Marine Aquatic Ecotoxicity Potential | MAETP | kg 1,4-DB eq | 1460 | ~ |
Terrestrial Ecotoxicity Potential | TETP | kg 1,4-DB eq | 0.0412 | 0.042 |
Land occupation (Ecological footprint) | LU | m2 arable | 0.0692 | 0.007 |
Mitsui Chemicals (Tokyo) and Microwave Chemical (Osaka) in Japan have announced a joint venture to develop technology for the manufacture of eco-friendly carbon fiber by combining the energy-intensive oxidation with the carbonisation stage in the Carbon-MX integrated heating process based on microwaves. The demonstration facility will be located in Nagoya and is scheduled to be completed by December 2023 [7, 8].
Table 2: Potential environmental impacts/kg associated with natural fibre reinforcement production.
Impact Category | Units | Flax fibre Le Duigou [6] |
Hemp fibre La Rosa [3-5] |
Hemp fibre Abass [9] | |
---|---|---|---|---|---|
Reinforcement | hackled fibre | Hemcore Biomat | four processes | ||
Abiotic depletion | ADP | kg Sb eq. | 0.0017 | 0.004 | 0.00195-0.00656 |
Acidification Potential | AP | kg SO2 eq | 0.0022 | 0.0026 | 0.00409-0.00663 |
Eutrophication potential | EP | kg PO4 P-lim. eq | 0.0014 | 0.0006 | 0.0045-0.00725 |
Cumulative Energy Demand | CED | MJ eq | 11.7 | 8.89 | 0.883-1.38 |
Global Warming Potential | GWP | kg CO2 eq | -1.4 | 0.531 | 5.42-7.32 |
Ozone layer Depletion Potential | ODP | x10-9 kg CFC11 eq | 24 | 68.8 | 72.5-149 |
Photochemical Oxidant Creation Potential | POCP | kg C2H2 eq | 730 x10-3 | ~ | ~ |
Human Toxicity Potential | HTP | kg 1,4-DB eq | 0.215 | 0.136 | 0.391-0.467 |
Freshwater Aquatic Ecotoxicity Potential | FAETP | kg 1,4-DB eq | 0.059 | 0.0571 | 0.0336-0.0455 |
Marine Aquatic Ecotoxicity Potential | MAETP | kg 1,4-DB eq | ~ | 131 | 78.9-627 |
Terrestrial Ecotoxicity Potential | TETP | kg 1,4-DB eq | 0.0087 | 0.00152 | 0.00186-0.00377 |
Land occupation (Ecological footprint) | LU | m2 arable | 0.84 | 1.54 | 0.00733-0.0729 |
Polymers
Note that while data is available for the respective base resin systems, the data do not include catalysts (e.g. peroxides for unsaturated polyester or vinyl ester) or hardeners (for epoxy) (Table 3). Ecoinvent has data for monoethanolamine (synonyms: 2-aminoethanol, ethanolamine or monoethanolamine) which might be sensible as proxies for aliphatic amines [10, 11].
Impact Category | Units | Vinyl ester La Rosa [3] |
LER-Gb epoxy resin Kočí [12] |
LER-Pc epoxy resin Kočí [12] |
Bio-based epoxy La Rosa [3] |
|
---|---|---|---|---|---|---|
System | Derakane VE 470-300 |
Entropy SuperSap epoxy | ||||
Abiotic depletion | ADP | kg Sb eq. | 59.4 | 0.009 | 0.021 | 0.01 |
Acidification Potential | AP | kg SO2 eq | 40.3 | 27.6 | 38.4 | 25.44 |
Eutrophication potential | EP | kg PO4 P-lim. eq | 6.6 | 7.6 | 5.5 | 6.9 |
Cumulative Energy Demand | CED | MJ eq | 2.16 | 102788d | 146313d | 1.9 |
Global Warming Potential | GWP | kg CO2 eq | 6663 | 4632 | 8654 | 4079 |
Ozone layer Depletion Potential | ODP | x10-9 kg CFC11 eq | 1260 | 200 x103 | 500 x103 | 0.00 |
Photochemical Oxidant Creation Potential | POCP | kg C2H2 eq | ~ | 2.083 | 2.958 | ~ |
Human Toxicity Potential | HTP | kg 1,4-DB eq | 490 | 566 | 276 | 545.17 |
Freshwater Aquatic Ecotoxicity Potential | FAETP | kg 1,4-DB eq | 247 | 68.2 | 16.6 | 66.39 |
Marine Aquatic Ecotoxicity Potential | MAETP | kg 1,4-DB eq | ~ | ~ | ~ | ~ |
Terrestrial Ecotoxicity Potential | TETP | kg 1,4-DB eq | 29.1 | 232 | 10.9 | 228.63 |
Land occupation (Ecological footprint) | LU | m2 arable | ~ | ~ | ~ | ~ |
Table 4 shows energy and GWP data for three resin systems.
Urethane methacrylates only have unsaturation at the ends of the polymer chain.
Resin system | Crystic Crestapol urethane methacrylate 1212 |
Unsaturated polyester | Unsaturated polyester | Epoxy | Epoxy | Poly(lactic acid) Ingeo 2009TM |
---|---|---|---|---|---|---|
References | [13, 14] | [13, 14] | [15] | [12, 14] | [15] | [15] |
Energy input (MJ/tonne) |
117000 | 128000 | 62800 [16] 64500 [17] 78000 [17] |
139000 | 76000 [16] 107100 [17] 141700 [17] |
67800 [18] |
Global warming potential (kg CO2 eq./tonne) |
5700 | 7600 | 2390 [17] | 6700 | 4680
[17] 5900 [17] |
1240 [18] |
ReCiPe points (mPt/kg) | ~ | ~ | 644 [19] | ~ | 734 [19] | 312 [19] |
Composites
Impact Category | Units | Le Duigou [20] | Le Duigou [20] | |
---|---|---|---|---|
System | Glass/UPRe | Flax/PLLAf | ||
Abiotic depletion | ADP | kg Sb eq. | 0.043 | 0.027 |
Acidification Potential | AP | kg SO2 eq | 0.021 | 0.0145 |
Eutrophication potential | EP | kg PO4 P-lim. eq | 0.0031 | 0.0075 |
Cumulative Energy Demand | CED | MJ eq | 143.9 | 76.3 |
Global Warming Potential | GWP | kg CO2 eq | 6.0 | 1.6 |
Ozone layer Depletion Potential | ODP | x10-9 kg CFC11 eq | 750 | 340 |
Photochemical Oxidant Creation Potential | POCP | kg C2H2 eq | 1.5 x 10-3 | 0.52 x 10-3 |
Human Toxicity Potential | HTP | kg 1,4-DB eq | 8.0 | 1.0 |
Freshwater Aquatic Ecotoxicity Potential | FAETP | kg 1,4-DB eq | 0.03 | 0.35 |
Marine Aquatic Ecotoxicity Potential | MAETP | kg 1,4-DB eq | ~ | ~ |
Terrestrial Ecotoxicity Potential | TETP | kg 1,4-DB eq | 0.04 | 0.03 |
Land occupation (Ecological footprint) | LU | m2 arable | 0.015 | 0.51 |
Gkoloni and Kostopoulos [21] presented a life cycle assessment for infusion manufacture of glass- or flax- fibre reinforced epoxy resin considering the consumable materials with oven or microwave cure. The dominant materials by mass were sealant tape > epoxy resin matrix > reinforcement fibre. The functional unit was a 200 mm square x 2 mm thick laminate and waste was about two-thirds of the material. No clues are provided for the source or the resin data!
... data in different units!
Category | Abbreviation | Unit | Continuous basalt fibre productiona Fořt [22] |
Glass fibres [23] then [5] |
Ramie fibres (after carding) [23] then [5] |
Ramie yarns [23] then [5] |
---|---|---|---|---|---|---|
Source | "results" | ~ | ~ | ~ | ||
Carcinogens | AC | kg C2H3Cl eq | 15.2 | ~ | ~ | ~ |
Non-Carcinogens | NC | kg C2H3Cl eq | 12.1 | ~ | ~ | ~ |
Respiratory Inorganics | RI | kg PM2.5 eq | 0.320 | ~ | ~ | ~ |
Ionizing Radiation | IR | Bq C14 eq | 2.30 × 103 | ~ | ~ | ~ |
Ozone Layer Depletion | OLD | kg CFC11 eq | 35.1 × 10−6 | 483 x 10-10 | 7.88 x 10-10 | 8.26 x 10-10 |
Respiratory Organics | RO | kg C2H4 eq | 0.175 | ~ | ~ | ~ |
Photochemical Oxidant | POg | kg NMVOC | ~ | 5.26 | 11.9 | 14.4 |
Human Toxicity | HTh | kg 1,4-DB eq. | ~ | 20.8 | 147 | 175 |
Aquatic Ecotoxicity | AEi | kg TEG water | 256× 103 | ~ | ~ | ~ |
Freshwater Aquatic Ecotoxicity | FAEh | kg 1,4-DB eq. | ~ | 0.461 | 4.12 | 4.15 |
Terrestrial Ecotoxicity | TEi | kg TEG soil | 57.4 × 103 | ~ | ~ | ~ |
Terrestrial Acidification/Nutrification | TAN | kg SO2 eq | 6.56 | 10.3 | 10.9 | 13.4 |
Land Occupation | LO | m2 organic arable | 8.05 | ~ | ~ | ~ |
Aquatic Acidification | AA | kg SO2 eq | 1.34 | ~ | ~ | ~ |
Aquatic Eutrophication | AEU | kg PO4 P-lim | 40.3 x 10-3 | 5.25 x 10-3 | 86.9 x 10-3 | 87.1 x 10-3 |
Global Warming | GW | kg CO2 eq | 398 | 1740 | 1770 | 3790 |
Non-Renewable Energy | NRE | MJ primary | 6630 | ~ | ~ | |
Fossil Depletion | kg oil eq. | ~ | 578 | 832 | 1340 | |
Mineral Extraction | ME | MJ surplus | 6.55 | ~ | ~ | ~ |
The values for each of the eight impact categories for the four stage (i.e. i: transportation, ii: cultivation, harvesting and peeling, iii: carding and spinning, and iv: degumming) production processes for ramie yarns are given in the original papers [5], [23].
Footnotes to the Tables
Data for natural fibres [7, 25].
Data for glass fibres [26-28].
Data for carbon fibres [29].
Ramachandran [30] undertook an LCA for carbon fiber, or bio-fibre, composites prepared via a vacuum bagging technique and reported different toxicity emissions across a number of manufacturing processes.
Pauer et al [31] analysed the differences in impact assessment results dependent on the chosen software-database combination. Six packaging systems were modelled in three software-database combinations (GaBi database in GaBi software, ecoinvent 3.6 database in openLCA, Environmental Footprint database in openLCA). Climate change results were simailar across the databases, but differences were greater for other environmental impacts.
References
Additional resource: Sphera professional database 2018.
Acknowledgement: Sincere thanks to Nanting Yu for identification of some of the sources of data!